Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1668
DC FieldValueLanguage
dc.contributor.authorDassios, George-
dc.contributor.authorHadjiloizi, Demetra-
dc.contributor.authorKariotou, Fotini-
dc.date.accessioned2013-03-04T10:29:45Zen
dc.date.accessioned2013-05-17T05:22:12Z-
dc.date.accessioned2015-12-02T09:55:57Z-
dc.date.available2013-03-04T10:29:45Zen
dc.date.available2013-05-17T05:22:12Z-
dc.date.available2015-12-02T09:55:57Z-
dc.date.issued2009-01-
dc.identifier.citationJournal of Mathematical Physics, 2009, vol. 50, no. 1, pp. 013508en_US
dc.identifier.issn10897658-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1668-
dc.description.abstractThe forward problem of magnetoencephalography (MEG) in ellipsoidal geometry has been studied by Dassios and Kariotou ["Magnetoencephalography in ellipsoidal geometry," J. Math. Phys. 44, 220 (2003)] using the theory of ellipsoidal harmonics. In fact, the analytic solution of the quadrupolic term for the magnetic induction field has been calculated in the case of a dipolar neuronal current. Nevertheless, since the quadrupolic term is only the leading nonvanishing term in the multipole expansion of the magnetic field, it contains not enough information for the construction of an effective algorithm to solve the inverse MEG problem, i.e., to recover the position and the orientation of a dipole from measurements of the magnetic field outside the head. For this task, the next multipole of the magnetic field is also needed. The present work provides exactly this octapolic contribution of the dipolar current to the expansion of the magnetic induction field. The octapolic term is expressed in terms of the ellipsoidal harmonics of the third degree, and therefore it provides the highest order terms that can be expressed in closed form using long but reasonable analytic and algebraic manipulations. In principle, the knowledge of the quadrupolic and the octapolic terms is enough to solve the inverse problem of identifying a dipole inside an ellipsoid. Nevertheless, a simple inversion algorithm for this problem is not yet known.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Mathematical Physicsen_US
dc.rights© American Institute of Physicsen_US
dc.subjectBioelectronicsen_US
dc.subjectNeurophysiologyen_US
dc.subjectMagnetoencephalographyen_US
dc.subjectAlgorithmsen_US
dc.titleThe octapolic ellipsoidal term in magnetoencephalographyen_US
dc.typeArticleen_US
dc.affiliationUniversity of Patrasen
dc.collaborationUniversity of Cambridgeen_US
dc.collaborationUniversity of Patrasen_US
dc.subject.categoryMaterials Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryUnited Kingdomen_US
dc.countryGreeceen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1063/1.3036183en_US
dc.dept.handle123456789/54en
dc.relation.issue1en_US
dc.relation.volume50en_US
cut.common.academicyear2008-2009en_US
dc.identifier.spage013508en_US
dc.identifier.epage013508en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn1089-7658-
crisitem.journal.publisherAmerican Institute of Physics-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

9
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

7
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s) 20

461
Last Week
0
Last month
1
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.