Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1622
DC FieldValueLanguage
dc.contributor.authorChatzis, Sotirios P.-
dc.contributor.authorVarvarigou, Theodora-
dc.date.accessioned2013-02-20T13:28:03Zen
dc.date.accessioned2013-05-17T05:22:25Z-
dc.date.accessioned2015-12-02T10:02:10Z-
dc.date.available2013-02-20T13:28:03Zen
dc.date.available2013-05-17T05:22:25Z-
dc.date.available2015-12-02T10:02:10Z-
dc.date.issued2008-
dc.identifier.citationIEEE transactions on fuzzy systems, 2008, vol. 16, iss. 5, pp. 1351-1361en_US
dc.identifier.issn19410034-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1622-
dc.description.abstractHidden Markov random field (HMRF) models have been widely used for image segmentation, as they appear naturally in problems where a spatially constrained clustering scheme, taking into account the mutual influences of neighboring sites, is asked for. Fuzzy c-means (FCM) clustering has also been successfully applied in several image segmentation applications. In this paper, we combine the benefits of these two approaches, by proposing a novel treatment of HMRF models, formulated on the basis of a fuzzy clustering principle. We approach the HMRF model treatment problem as an FCM-type clustering problem, effected by introducing the explicit assumptions of the HMRF model into the fuzzy clustering procedure. Our approach utilizes a fuzzy objective function regularized by Kullback--Leibler divergence information, and is facilitated by application of a mean-field-like approximation of the MRF prior. We experimentally demonstrate the superiority of the proposed approach over competing methodologies, considering a series of synthetic and real-world image segmentation applicationsen_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofIEEE Transactions on Fuzzy Systemsen_US
dc.rights© IEEEen_US
dc.subjectFuzzy systemsen_US
dc.subjectComputing & Processing (Hardware/Software)en_US
dc.subjectMarkov processesen_US
dc.subjectSpeechen_US
dc.titleA fuzzy clustering approach toward Hidden Markov random field models for enhanced spatially constrained image segmentationen_US
dc.typeArticleen_US
dc.collaborationNational Technical University Of Athensen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryGreeceen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1109/TFUZZ.2008.2005008en_US
dc.dept.handle123456789/54en
dc.relation.issue5en_US
dc.relation.volume16en_US
cut.common.academicyear2007-2008en_US
dc.identifier.spage1351en_US
dc.identifier.epage1361en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.journal.journalissn1941-0034-
crisitem.journal.publisherIEEE-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4956-4013-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

208
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

168
Last Week
0
Last month
2
checked on Oct 29, 2023

Page view(s)

451
Last Week
0
Last month
1
checked on Jan 10, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.