Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1610
DC FieldValueLanguage
dc.contributor.authorChatzis, Sotirios P.-
dc.date.accessioned2013-02-20T12:33:34Zen
dc.date.accessioned2013-05-17T05:22:37Z-
dc.date.accessioned2015-12-02T10:01:39Z-
dc.date.available2013-02-20T12:33:34Zen
dc.date.available2013-05-17T05:22:37Z-
dc.date.available2015-12-02T10:01:39Z-
dc.date.issued2010-12-01-
dc.identifier.citationFuzzy sets and systems, 2010, vol. 161, no. 23, pp. 3000-3013en_US
dc.identifier.issn01650114-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1610-
dc.description.abstractIn this paper, we establish a novel regard towards fuzzy clustering, showing it provides a sound framework for fitting finite mixture models. We propose a novel fuzzy clustering-type methodology for finite mixture model fitting, effected by utilizing a regularized form of the fuzzy c-means (FCM) algorithm, and introducing a proper dissimilarity functional for the algorithm with respect to the probabilistic properties of the model being treated. We apply the proposed methodology in a number of popular finite mixture models, and the corresponding expressions of the fuzzy model fitting algorithm are derived. We examine the efficacy of our novel approach in both clustering and classification applications of benchmark data sets, and we demonstrate the advantages of the proposed approach over maximum-likelihooden_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofFuzzy sets and systemsen_US
dc.rights© Elsevieren_US
dc.subjectFuzzy clusteringen_US
dc.subjectFuzzy statistics and data analysisen_US
dc.subjectLearningen_US
dc.titleA method for training finite mixture models under a fuzzy clustering principleen_US
dc.typeArticleen_US
dc.collaborationUniversity of Miamien_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryUnited Statesen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.fss.2010.03.015en_US
dc.dept.handle123456789/54en
dc.relation.issue23en_US
dc.relation.volume161en_US
cut.common.academicyear2010-2011en_US
dc.identifier.spage3000en_US
dc.identifier.epage3013en_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1en-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4956-4013-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.journal.journalissn0165-0114-
crisitem.journal.publisherElsevier-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

11
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 10

9
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

492
Last Week
0
Last month
2
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.