Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1596
DC FieldValueLanguage
dc.contributor.authorChatzis, Sotirios P.-
dc.contributor.authorKorkinof, Dimitrios-
dc.contributor.authorDemiris, Yiannis-
dc.date.accessioned2013-02-19T15:50:00Zen
dc.date.accessioned2013-05-17T05:22:36Z-
dc.date.accessioned2015-12-02T10:01:17Z-
dc.date.available2013-02-19T15:50:00Zen
dc.date.available2013-05-17T05:22:36Z-
dc.date.available2015-12-02T10:01:17Z-
dc.date.issued2012-06-19-
dc.identifier.citationIEEE Transactions on Robotics, 2012, vol. 28, no. 6, pp. 1371 - 1381en_US
dc.identifier.issn19410468-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1596-
dc.description.abstractStatistical machine learning approaches have been at the epicenter of the ongoing research work in the field of robot learning by demonstration over the past few years. One of the most successful methodologies used for this purpose is a Gaussian mixture regression (GMR). In this paper, we propose an extension of GMR-based learning by demonstration models to incorporate concepts from the field of quantum mechanics. Indeed, conventional GMR models are formulated under the notion that all the observed data points can be assigned to a distinct number of model states (mixture components). In this paper, we reformulate GMR models, introducing some quantum states constructed by superposing conventional GMR states by means of linear combinations. The so-obtained quantum statistics-inspired mixture regression algorithm is subsequently applied to obtain a novel robot learning by demonstration methodology, offering a significantly increased quality of regenerated trajectories for computational costs comparable with currently state-of-the-art trajectory-based robot learning by demonstration approaches. We experimentally demonstrate the efficacy of the proposed approach.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofIEEE Transactions on Roboticsen_US
dc.rights© 2012 IEEEen_US
dc.subjectComputer scienceen_US
dc.subjectGaussian processesen_US
dc.subjectQuantum computingen_US
dc.subjectQuantum statisticsen_US
dc.subjectRobotsen_US
dc.titleA Quantum-Statistical Approach Toward Robot Learning by Demonstrationen_US
dc.typeArticleen_US
dc.collaborationImperial College Londonen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1109/TRO.2012.2203055en_US
dc.dept.handle123456789/54en
dc.relation.issue6en_US
dc.relation.volume28en_US
cut.common.academicyear2011-2012en_US
dc.identifier.spage1371en_US
dc.identifier.epage1381en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4956-4013-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

15
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 10

13
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s) 20

508
Last Week
0
Last month
8
checked on Oct 4, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.