Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/15964
DC FieldValueLanguage
dc.contributor.authorGeorgiou, Michael A.-
dc.contributor.authorPaphitis, Aristodemos-
dc.contributor.authorSirivianos, Michael-
dc.contributor.authorHerodotou, Herodotos-
dc.date.accessioned2020-02-17T09:31:58Z-
dc.date.available2020-02-17T09:31:58Z-
dc.date.issued2019-04-01-
dc.identifier.citationProceedings - 2019 IEEE 35th International Conference on Data Engineering Workshops, ICDEW 2019en_US
dc.identifier.isbn9781728108902-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/15964-
dc.description.abstractExisting relational database systems often suffer from rapid increases or significant variability of transactional workloads but lack support for scalability or elasticity. Database replication has been employed to scale workload performance but past approaches make various performance versus consistency tradeoffs and typically lack the mechanisms and policies for dynamically adding and removing replicas. This paper presents Hihooi, a replication-based middleware system that is able to achieve scalability, strong consistency, and elasticity for existing transactional databases. These features are enabled by (i) a novel replication algorithm for propagating database modifications asynchronously and consistently to all replicas at high speeds, and (ii) a new routing algorithm for directing incoming transactions to consistent replicas. Our experimental evaluation validates the high scalability and elasticity benefits offered by Hihooi, which form the key ingredients towards a truly auto-scaling system.en_US
dc.language.isoenen_US
dc.rights© 2019 IEEE.en_US
dc.subjectDatabase replicationen_US
dc.subjectElasticityen_US
dc.subjectScalabilityen_US
dc.subjectRelational database systemsen_US
dc.subjectTechnical presentationsen_US
dc.titleTowards auto-scaling existing transactional databases with strong consistencyen_US
dc.typeConference Papersen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceIEEE International Conference on Data Engineering Workshopsen_US
dc.identifier.doi10.1109/ICDEW.2019.00-26en_US
dc.identifier.scopus2-s2.0-85069173574-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85069173574-
cut.common.academicyear2019-2020en_US
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.openairetypeconferenceObject-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-6500-581X-
crisitem.author.orcid0000-0002-8717-1691-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

5
checked on Mar 14, 2024

Page view(s)

296
Last Week
0
Last month
2
checked on Nov 6, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.