Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1585
DC FieldValueLanguage
dc.contributor.authorChatzis, Sotirios P.-
dc.contributor.authorTsechpenakis, Gavriil-
dc.contributor.otherΧατζής, Σωτήριος-
dc.date.accessioned2013-02-19T15:51:26Zen
dc.date.accessioned2013-05-17T05:22:24Z-
dc.date.accessioned2015-12-02T10:01:04Z-
dc.date.available2013-02-19T15:51:26Zen
dc.date.available2013-05-17T05:22:24Z-
dc.date.available2015-12-02T10:01:04Z-
dc.date.issued2012-05-
dc.identifier.citationPattern recognition, 2012, vol. 45, no. 5, pp. 1819–1825en_US
dc.identifier.issn00313203-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1585-
dc.description.abstractGenerative mixture models (MMs) provide one of the most popular methodologies for unsupervised data clustering. MMs are formulated on the basis of the assumption that each observation derives from (belongs to) a single cluster. However, in many applications, data may intuitively belong to multiple classes, thus rendering the single-cluster assignment assumptions of MMs irrelevant. Furthermore, even in applications where a single-cluster data assignment is required, the induced multinomial allocation of the modeled data points to the clusters derived by a MM, imposing the constraint that the membership probabilities of a data point across clusters sum to one, makes MMs very vulnerable to the presence of outliers in the clustered data sets, and renders them ineffective in discriminating between cases of equal evidence or ignorance. To resolve these issues, in this paper we introduce a possibilistic formulation of MMs. Possibilistic clustering is a methodology that yields possibilistic data partitions, with the obtained membership values being interpreted as degrees of possibility (compatibilities) of the data points with respect to the various clusters. We provide an efficient maximum-likelihood fitting algorithm for the proposed model, and we conduct an objective evaluation of its efficacy using benchmark dataen_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofPattern Recognitionen_US
dc.rights© 2011 Elsevier. All Rights Reserveden_US
dc.subjectPattern recognitionen_US
dc.subjectMixturesen_US
dc.subjectComputer scienceen_US
dc.titleA Possibilistic Clustering Approach Toward Generative Mixture Modelsen_US
dc.typeArticleen_US
dc.collaborationImperial College Londonen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.patcog.2011.10.010en_US
dc.dept.handle123456789/54en
dc.relation.issue5en_US
dc.relation.volume45en_US
cut.common.academicyear2011-2012en_US
dc.identifier.spage1819en_US
dc.identifier.epage1825en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4956-4013-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.journal.journalissn0031-3203-
crisitem.journal.publisherElsevier-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.