Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/15786
DC FieldValueLanguage
dc.contributor.authorStephanou, Pavlos S.-
dc.contributor.authorKröger, Martin-
dc.date.accessioned2020-02-13T10:58:46Z-
dc.date.available2020-02-13T10:58:46Z-
dc.date.issued2018-05-14-
dc.identifier.citationJournal of Chemical Physics, 2018, vol. 148, no. 18, 14 May 2018en_US
dc.identifier.issn00219606-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/15786-
dc.description.abstractThe steady-state extensional viscosity of dense polymeric liquids in elongational flows is known to be peculiar in the sense that for entangled polymer melts it monotonically decreases - whereas for concentrated polymer solutions it increases - with increasing strain rate beyond the inverse Rouse time. To shed light on this issue, we solve the kinetic theory model for concentrated polymer solutions and entangled melts proposed by Curtiss and Bird, also known as the tumbling-snake model, supplemented by a variable link tension coefficient that we relate to the uniaxial nematic order parameter of the polymer. As a result, the friction tensor is increasingly becoming isotropic at large strain rates as the polymer concentration decreases, and the model is seen to capture the experimentally observed behavior. Additional refinements may supplement the present model to capture very strong flows. We furthermore derive analytic expressions for small rates and the linear viscoelastic behavior. This work builds upon our earlier work on the use of the tumbling-snake model under shear and demonstrates its capacity to improve our microscopic understanding of the rheology of entangled polymer melts and concentrated polymer solutions.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Chemical Physicsen_US
dc.rights© Author(s)en_US
dc.subjectFrictionen_US
dc.subjectPolymer meltsen_US
dc.subjectQuantum entanglementen_US
dc.subjectViscosityen_US
dc.titleFrom intermediate anisotropic to isotropic friction at large strain rates to account for viscosity thickening in polymer solutionsen_US
dc.typeArticleen_US
dc.collaborationUniversity of Cyprusen_US
dc.collaborationPolymer Physicsen_US
dc.subject.categoryChemical Engineeringen_US
dc.journalsOpen Accessen_US
dc.countryCyprusen_US
dc.countrySwitzerlanden_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1063/1.5019337en_US
dc.identifier.pmid29764144en
dc.identifier.scopus2-s2.0-85044066162en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85044066162en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.issue18en_US
dc.relation.volume148en_US
cut.common.academicyear2017-2018en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn1089-7690-
crisitem.journal.publisherAmerican Institute of Physics-
crisitem.author.deptDepartment of Chemical Engineering-
crisitem.author.facultyFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.orcid0000-0003-3182-0581-
crisitem.author.parentorgFaculty of Geotechnical Sciences and Environmental Management-
Appears in Collections:Άρθρα/Articles
Files in This Item:
File Description SizeFormat
stephanou from intermediate.pdfFull text3.57 MBAdobe PDFView/Open
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

7
checked on Feb 2, 2024

WEB OF SCIENCETM
Citations

6
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

336
Last Week
1
Last month
29
checked on Mar 14, 2025

Download(s)

110
checked on Mar 14, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.