Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1577
DC FieldValueLanguage
dc.contributor.authorChatzis, Sotirios P.-
dc.contributor.authorKosmopoulos, Dimitrios I.-
dc.date.accessioned2013-02-20T12:32:46Zen
dc.date.accessioned2013-05-17T05:22:36Z-
dc.date.accessioned2015-12-02T10:00:46Z-
dc.date.available2013-02-20T12:32:46Zen
dc.date.available2013-05-17T05:22:36Z-
dc.date.available2015-12-02T10:00:46Z-
dc.date.issued2011-02-
dc.identifier.citationPattern recognition, 2011, vol. 44, no. 2, pp. 295–306en_US
dc.identifier.issn00313203-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1577-
dc.description.abstractThe Student's-t hidden Markov model (SHMM) has been recently proposed as a robust to outliers form of conventional continuous density hidden Markov models, trained by means of the expectationmaximization algorithm. In this paper, we derive a tractable variational Bayesian inference algorithm for this model. Our innovative approach provides an efficient and more robust alternative to EM-based methods, tackling their singularity and overfitting proneness, while allowing for the automatic determination of the optimal model size without cross-validation. We highlight the superiority of the proposed model over the competition using synthetic and real data. We also demonstrate the merits of our methodology in applications from diverse research fields, such as human computer interaction, robotics and semantic audio analysisen_US
dc.language.isoenen_US
dc.relation.ispartofPattern recognitionen_US
dc.rights© Elsevieren_US
dc.subjectHidden Markov modelsen_US
dc.subjectRobotic task failureen_US
dc.subjectSpeaker identificationen_US
dc.subjectStudent's-t distributionen_US
dc.subjectVariational Bayesen_US
dc.subjectViolence detectionen_US
dc.titleA variational Bayesian methodology for hidden Markov models utilizing Student's-t mixturesen_US
dc.typeArticleen_US
dc.collaborationImperial College Londonen_US
dc.collaborationInstitute of Informatics and Telecommunicationsen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryUnited Kingdomen_US
dc.countryGreeceen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.patcog.2010.09.001en_US
dc.dept.handle123456789/54en
dc.relation.issue2en_US
dc.relation.volume44en_US
cut.common.academicyear2010-2011en_US
dc.identifier.spage295en_US
dc.identifier.epage306en_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1en-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4956-4013-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.journal.journalissn0031-3203-
crisitem.journal.publisherElsevier-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

50
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

44
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s) 50

404
Last Week
2
Last month
5
checked on Jan 28, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.