Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/1577
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chatzis, Sotirios P. | - |
dc.contributor.author | Kosmopoulos, Dimitrios I. | - |
dc.date.accessioned | 2013-02-20T12:32:46Z | en |
dc.date.accessioned | 2013-05-17T05:22:36Z | - |
dc.date.accessioned | 2015-12-02T10:00:46Z | - |
dc.date.available | 2013-02-20T12:32:46Z | en |
dc.date.available | 2013-05-17T05:22:36Z | - |
dc.date.available | 2015-12-02T10:00:46Z | - |
dc.date.issued | 2011-02 | - |
dc.identifier.citation | Pattern recognition, 2011, vol. 44, no. 2, pp. 295–306 | en_US |
dc.identifier.issn | 00313203 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/1577 | - |
dc.description.abstract | The Student's-t hidden Markov model (SHMM) has been recently proposed as a robust to outliers form of conventional continuous density hidden Markov models, trained by means of the expectationmaximization algorithm. In this paper, we derive a tractable variational Bayesian inference algorithm for this model. Our innovative approach provides an efficient and more robust alternative to EM-based methods, tackling their singularity and overfitting proneness, while allowing for the automatic determination of the optimal model size without cross-validation. We highlight the superiority of the proposed model over the competition using synthetic and real data. We also demonstrate the merits of our methodology in applications from diverse research fields, such as human computer interaction, robotics and semantic audio analysis | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Pattern recognition | en_US |
dc.rights | © Elsevier | en_US |
dc.subject | Hidden Markov models | en_US |
dc.subject | Robotic task failure | en_US |
dc.subject | Speaker identification | en_US |
dc.subject | Student's-t distribution | en_US |
dc.subject | Variational Bayes | en_US |
dc.subject | Violence detection | en_US |
dc.title | A variational Bayesian methodology for hidden Markov models utilizing Student's-t mixtures | en_US |
dc.type | Article | en_US |
dc.collaboration | Imperial College London | en_US |
dc.collaboration | Institute of Informatics and Telecommunications | en_US |
dc.collaboration | Cyprus University of Technology | en_US |
dc.subject.category | Computer and Information Sciences | en_US |
dc.journals | Subscription | en_US |
dc.country | United Kingdom | en_US |
dc.country | Greece | en_US |
dc.country | Cyprus | en_US |
dc.subject.field | Engineering and Technology | en_US |
dc.publication | Peer Reviewed | en_US |
dc.identifier.doi | 10.1016/j.patcog.2010.09.001 | en_US |
dc.dept.handle | 123456789/54 | en |
dc.relation.issue | 2 | en_US |
dc.relation.volume | 44 | en_US |
cut.common.academicyear | 2010-2011 | en_US |
dc.identifier.spage | 295 | en_US |
dc.identifier.epage | 306 | en_US |
item.openairetype | article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | Department of Electrical Engineering, Computer Engineering and Informatics | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0002-4956-4013 | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
crisitem.journal.journalissn | 0031-3203 | - |
crisitem.journal.publisher | Elsevier | - |
Appears in Collections: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
50
checked on Nov 9, 2023
WEB OF SCIENCETM
Citations
44
Last Week
0
0
Last month
0
0
checked on Oct 29, 2023
Page view(s) 50
404
Last Week
2
2
Last month
5
5
checked on Jan 28, 2025
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.