Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1572
DC FieldValueLanguage
dc.contributor.authorChatzis, Sotirios P.-
dc.contributor.authorKosmopoulos, Dimitrios I.-
dc.contributor.otherΧατζής, Σωτήριος Π.-
dc.contributor.otherΚοσμόπουλος, Δημήτριος-
dc.date.accessioned2013-02-19T15:49:09Zen
dc.date.accessioned2013-05-17T05:22:36Z-
dc.date.accessioned2015-12-02T10:00:33Z-
dc.date.available2013-02-19T15:49:09Zen
dc.date.available2013-05-17T05:22:36Z-
dc.date.available2015-12-02T10:00:33Z-
dc.date.issued2012-03-05-
dc.identifier.citationIEEE transactions on circuits and systems for video technology, 2012, vol. 22, no. 7, pp.1076-1086en_US
dc.identifier.issn15582205-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1572-
dc.description.abstractIn this paper, we provide a variational Bayesian (VB) treatment of multistream fused hidden Markov models (MFHMMs), and apply it in the context of active learning-based visual workflow recognition (WR). Contrary to training methods yielding point estimates, such as maximum likelihood or maximum a posteriori training, the VB approach provides an estimate of the posterior distribution over the MFHMM parameters. As a result, our approach provides an elegant solution toward the amelioration of the overfitting issues of point estimate-based methods. Additionally, it provides a measure of confidence in the accuracy of the learned model, thus allowing for the easy and cost-effective utilization of active learning in the context of MFHMMs. Two alternative active learning algorithms are considered in this paper: query by committee, which selects unlabeled data that minimize the classification variance, and a maximum information gain method that aims to maximize the alteration in model variance by proper data labeling. We demonstrate the efficacy of the proposed treatment of MFHMMs by examining two challenging WR scenarios, and show that the application of active learning, which is facilitated by our VB approach, allows for a significant reduction of the MFHMM training costsen_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofIEEE transactions on circuits and systems for video technologyen_US
dc.rights© 2012 IEEEen_US
dc.subjectMarkov processesen_US
dc.subjectCouplingsen_US
dc.subjectArtificial intelligenceen_US
dc.subjectvideo surveillanceen_US
dc.titleVisual Workflow Recognition Using a Variational Bayesian Treatment of Multistream Fused Hidden Markov Modelsen_US
dc.typeArticleen_US
dc.collaborationImperial College Londonen_US
dc.collaborationUniversity of Texasen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1109/TCSVT.2012.2189795en_US
dc.dept.handle123456789/54en
dc.relation.issue7en_US
dc.relation.volume22en_US
cut.common.academicyear2011-2012en_US
dc.identifier.spage1076en_US
dc.identifier.epage1086en_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1en-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4956-4013-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 5

3
Last Week
0
Last month
0
checked on Oct 21, 2023

Page view(s)

428
Last Week
2
Last month
2
checked on Jan 30, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.