Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1570
DC FieldValueLanguage
dc.contributor.authorChatzis, Sotirios P.-
dc.contributor.authorVarvarigou, Theodora-
dc.date.accessioned2013-02-20T13:11:26Zen
dc.date.accessioned2013-05-17T05:22:25Z-
dc.date.accessioned2015-12-02T10:00:24Z-
dc.date.available2013-02-20T13:11:26Zen
dc.date.available2013-05-17T05:22:25Z-
dc.date.available2015-12-02T10:00:24Z-
dc.date.issued2009-06-
dc.identifier.citationIEEE Transactions on Fuzzy Systems, 2009, vol. 17, no. 3, pp. 505-517en_US
dc.identifier.issn19410034-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1570-
dc.description.abstractFactor analysis is a latent subspace model commonly used for local dimensionality reduction tasks. Fuzzy c-means (FCM) type fuzzy clustering approaches are closely related to Gaussian mixture models (GMMs), and expectation - maximization (EM) like algorithms have been employed in fuzzy clustering with regularized objective functions. Student's t-mixture models (SMMs) have been proposed recently as an alternative to GMMs, resolving their outlier vulnerability problems. In this paper, we propose a novel FCM-type fuzzy clustering scheme providing two significant benefits when compared with the existing approaches. First, it provides a well-established observation space dimensionality reduction framework for fuzzy clustering algorithms based on factor analysis, allowing concurrent performance of fuzzy clustering and, within each cluster, local dimensionality reduction. Second, it exploits the outlier tolerance advantages of SMMs to provide a novel, soundly founded, nonheuristic, robust fuzzy clustering framework by introducing the effective means to incorporate the explicit assumption about Student's t-distributed data into the fuzzy clustering procedure. This way, the proposed model yields a significant performance increase for the fuzzy clustering algorithm, as we experimentally demonstrateen_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofIEEE Transactions on Fuzzy Systemsen_US
dc.rights© IEEEen_US
dc.subjectFuzzy systemsen_US
dc.subjectFactor analysisen_US
dc.subjectGaussian distributionen_US
dc.subjectExpectation-maximization algorithmsen_US
dc.titleFactor analysis latent subspace modeling and robust fuzzy clustering using t-distributionsen_US
dc.typeArticleen_US
dc.collaborationNational Technical University Of Athensen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryGreeceen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1109/TFUZZ.2008.924317en_US
dc.dept.handle123456789/54en
dc.relation.issue3en_US
dc.relation.volume17en_US
cut.common.academicyear2008-2009en_US
dc.identifier.spage505en_US
dc.identifier.epage517en_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1en-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4956-4013-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.journal.journalissn1941-0034-
crisitem.journal.publisherIEEE-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

38
checked on Nov 8, 2023

WEB OF SCIENCETM
Citations 1

29
Last Week
0
Last month
1
checked on Oct 29, 2023

Page view(s)

477
Last Week
0
Last month
3
checked on Jan 30, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.