Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/15699
Τίτλος: | Answering Open domain questions by respecting Power Law artifacts | Συγγραφείς: | Michael, Stavros | Λέξεις-κλειδιά: | Machine learning;Deep learning;Neural Attention (NA);sequence-to-sequence (seq2seq);Natural Language Processing (NLP) | Advisor: | Chatzis, Sotirios P. | Ημερομηνία Έκδοσης: | Μαΐ-2019 | Department: | Department of Electrical Engineering, Computer Engineering and Informatics | Faculty: | Faculty of Engineering and Technology | Περίληψη: | It has been an evolution in the last few years of machine learning methods, in which a part of this family is the deep learning models. Neural Attention (NA) is the most recent field in this area, which various methods are implemented or still in progress. One of many models that are based on NA, is sequence-to-sequence (seq2seq); an architecture of Natural Language Processing, used mainly to process data in text format and uncover useful insights. In this paper, we will focus on NA and show what are the challenges with it. We aim to examine a Question Answer (QA) model, whether addressing Power Law artifacts could facilitate modern performance; this is a plausible hypothesis, since we know that language understanding does exhibit such behavior. Also, we examine the performance of the resulting model using the benchmarks datasets. | URI: | https://hdl.handle.net/20.500.14279/15699 | Rights: | Απαγορεύεται η δημοσίευση ή αναπαραγωγή, ηλεκτρονική ή άλλη χωρίς τη γραπτή συγκατάθεση του δημιουργού και κάτοχου των πνευματικών δικαιωμάτων. | Type: | MSc Thesis | Affiliation: | Cyprus University of Technology |
Εμφανίζεται στις συλλογές: | Μεταπτυχιακές Εργασίες/ Master's thesis |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
Abstract Stavros Michael.pdf | Abstract | 144.65 kB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
Page view(s) 50
263
Last Week
1
1
Last month
8
8
checked on 29 Ιαν 2025
Download(s) 50
97
checked on 29 Ιαν 2025
Google ScholarTM
Check
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα