Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1558
DC FieldValueLanguage
dc.contributor.authorFox, James F.-
dc.contributor.authorDoyle, Mark W.-
dc.contributor.authorAnayiotos, Andreas-
dc.contributor.otherΑναγιωτός, Ανδρέας-
dc.date.accessioned2013-03-04T12:29:30Zen
dc.date.accessioned2013-05-17T05:22:50Z-
dc.date.accessioned2015-12-02T10:11:42Z-
dc.date.available2013-03-04T12:29:30Zen
dc.date.available2013-05-17T05:22:50Z-
dc.date.available2015-12-02T10:11:42Z-
dc.date.issued1996-
dc.identifier.citationAmerican Society of Mechanical Engineers, 1996, vol. 33, pp. 297-298en_US
dc.identifier.issn10716947-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1558-
dc.description.abstractSeveral current investigations aim at developing methods of measuring valvular regurgitation using velocity encoded magnetic resonance (MR) imaging. MR flow encoding provides useful three-dimensional spatial and velocity information. While still in the preliminary stages, these investigations must distinguish the optimum scan parameters necessary to minimize acquisition time and maximize quantitative results. Scan parameters of particular interest are slice thickness and slice orientation. This simulation uses velocity information from computational fluid dynamic (CFD) models to create a numerical, flow dependent, MR scan proximal to an orifice. The purpose of this simulation is to analyze the effect of slice thickness and slice orientation on measuring flow proximal to an orifice. Results indicate that centerline distribution for the four millimeter (mm) slices compare best to the numerical and 1 mm slices, considering that larger slice thicknesses reduce scan time. In addition, given the 4 mm slice thickness, perpendicular slices provide more useful velocity information within the region of interest.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofAmerican Society of Mechanical Engineers, Bioengineering Divisionen_US
dc.rights©ASMEen_US
dc.subjectMagnetic resonance imagingen_US
dc.subjectComputer simulationen_US
dc.subjectHemodynamicsen_US
dc.subjectFinite element methoden_US
dc.titleA numerical simulation for determination of velocity encoded MR parametersen_US
dc.typeArticleen_US
dc.affiliationUniversity of Alabama at Birminghamen
dc.collaborationUniversity of Alabama at Birminghamen_US
dc.journalsSubscriptionen_US
dc.countryUnited Statesen_US
dc.subject.fieldSocial Sciencesen_US
dc.dept.handle123456789/54en
dc.relation.volume33en_US
cut.common.academicyear1995-1996en_US
dc.identifier.spage297en_US
dc.identifier.epage298en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn00001990-
crisitem.journal.publisherAmerican Society of Mechanical Engineers-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-4471-7604-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

Page view(s) 50

363
Last Week
0
Last month
1
checked on Dec 22, 2024

Google ScholarTM

Check


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.