Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1554
DC FieldValueLanguage
dc.contributor.authorFyta, Maria G.-
dc.contributor.authorRemediakis, Ioannis N.-
dc.contributor.authorKelires, Pantelis C.-
dc.contributor.otherΚελίρης, Παντελής-
dc.date.accessioned2013-03-04T09:10:02Zen
dc.date.accessioned2013-05-17T05:22:49Z-
dc.date.accessioned2015-12-02T10:11:38Z-
dc.date.available2013-03-04T09:10:02Zen
dc.date.available2013-05-17T05:22:49Z-
dc.date.available2015-12-02T10:11:38Z-
dc.date.issued2006-05-12-
dc.identifier.citationPhysical Review Letters, 2006, vol. 96, no.18en_US
dc.identifier.issn10797114-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1554-
dc.description.abstractTight-binding molecular dynamics simulations shed light into the fracture mechanisms and the ideal strength of tetrahedral amorphous carbon and of nanocomposite carbon containing diamond crystallites, two of the hardest materials. It is found that fracture in the nanocomposites, under tensile or shear load, occurs intergrain and so their ideal strength is similar to the pure amorphous phase. The onset of fracture takes place at weakly bonded sp3 sites in the amorphous matrix. On the other hand, the nanodiamond inclusions significantly enhance the elastic moduli, which approach those of diamond.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofPhysical Review Lettersen_US
dc.rights© The American Physical Societyen_US
dc.subjectCarbonen_US
dc.subjectComputer simulationen_US
dc.subjectCrystalsen_US
dc.subjectDiamondsen_US
dc.subjectMolecular dynamicsen_US
dc.subjectNanostructured materialsen_US
dc.subjectFracture mechanicsen_US
dc.titleInsights into the fracture mechanisms and strength of amorphous and nanocomposite carbonen_US
dc.typeArticleen_US
dc.affiliationUniversity of Creteen
dc.collaborationUniversity of Creteen_US
dc.subject.categoryMechanical Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryGreeceen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1103/PhysRevLett.96.185503en_US
dc.dept.handle123456789/54en
dc.relation.issue18en_US
dc.relation.volume96en_US
cut.common.academicyear2020-2021en_US
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.languageiso639-1en-
crisitem.journal.journalissn1079-7114-
crisitem.journal.publisherAmerican Physical Society-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-0268-259X-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

70
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

71
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s) 20

466
Last Week
3
Last month
10
checked on May 9, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.