Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1519
DC FieldValueLanguage
dc.contributor.authorKalogirou, Soteris A.-
dc.date.accessioned2009-05-27T05:33:31Zen
dc.date.accessioned2013-05-17T05:22:48Z-
dc.date.accessioned2015-12-02T10:07:37Z-
dc.date.available2009-05-27T05:33:31Zen
dc.date.available2013-05-17T05:22:48Z-
dc.date.available2015-12-02T10:07:37Z-
dc.date.issued2005-04-
dc.identifier.citationInternational Journal of Computer Applications in Technology, 2005, Vol. 22, No.2/3, pp. 90 - 103en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1519-
dc.description.abstractThe objective of this work is to use artificial intelligence methods for the optimal design of solar energy systems. The lifecycle savings of the system is used as the optimisation parameter. The variable parameters in this optimisation are the collector area, slope and mass flow rate and the volume of the storage tank. An artificial neural network is trained, using the results of a small number of simulations carried out with TRNSYS program, to learn the correlation of the above variable parameters on the auxiliary energy required by the system from which the lifecycle savings can be estimated. Subsequently, a genetic algorithm is employed to estimate the optimum size of the variable parameters, which maximises lifecycle savings. As an example, the optimisation of a large hot water system is presented. The optimum solution obtained from the present methodology is achieved very quickly as compared to the time required to obtain the same solution by the traditional trial and error method, which would require thousands of runs of TRNSYS to cover all possible combinations considered by the genetic algorithm.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Computer Applications in Technologyen_US
dc.rights© Inderscienceen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectArtificial Neural Networks (ANN)en_US
dc.subjectGenetic algorithmsen_US
dc.subjectOptimisationen_US
dc.subjectSolar systemsen_US
dc.subjectSolar energyen_US
dc.subjectSolar poweren_US
dc.subjectArtificial intelligenceen_US
dc.subjectOptimal designen_US
dc.subjectLife cycle savingsen_US
dc.subjectCollector areaen_US
dc.titleUse of artificial intelligence for the optimal design of solar systemsen_US
dc.typeArticleen_US
dc.collaborationHigher Technical Institute Cyprusen_US
dc.subject.categoryEnvironmental Engineeringen_US
dc.journalsHybrid Open Accessen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1504/IJCAT.2005.006940en_US
dc.dept.handle123456789/54en
dc.relation.issue2/3en_US
dc.relation.volume22en_US
cut.common.academicyear2005-2006en_US
dc.identifier.spage90en_US
dc.identifier.epage103en_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1en-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4497-0602-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.journal.journalissn1741-5047-
crisitem.journal.publisherInderscience-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 50

7
checked on Nov 9, 2023

Page view(s) 50

525
Last Week
1
Last month
8
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons