Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/14962
DC FieldValueLanguage
dc.contributor.authorDette, Holger-
dc.contributor.authorKonstantinou, Maria-
dc.contributor.authorZhigljavsky, Anatoly-
dc.date.accessioned2019-08-22T10:05:05Z-
dc.date.available2019-08-22T10:05:05Z-
dc.date.issued2017-08-01-
dc.identifier.citationAnnals of Statistics, 2017, vol. 45, no. 4, pp. 1579-1608en_US
dc.identifier.issn21688966-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/14962-
dc.description.abstractThis paper presents a new and efficient method for the construction of optimal designs for regression models with dependent error processes. In contrast to most of the work in this field, which starts with a model for a finite number of observations and considers the asymptotic properties of estimators and designs as the sample size converges to infinity, our approach is based on a continuous time model. We use results from stochastic analysis to identify the best linear unbiased estimator (BLUE) in this model. Based on the BLUE, we construct an efficient linear estimator and corresponding optimal designs in the model for finite sample size by minimizing the mean squared error between the optimal solution in the continuous time model and its discrete approximation with respect to the weights (of the linear estimator) and the optimal design points, in particular in the multiparameter case. In contrast to previous work on the subject, the resulting estimators and corresponding optimal designs are very efficient and easy to implement. This means that they are practically not distinguishable from the weighted least squares estimator and the corresponding optimal designs, which have to be found numerically by nonconvex discrete optimization. The advantages of the new approach are illustrated in several numerical examples.en_US
dc.language.isoenen_US
dc.relation.ispartofAnnals of Statisticsen_US
dc.rights© Institute of Mathematical Statisticsen_US
dc.subjectCorrelated observationsen_US
dc.subjectDoob representationen_US
dc.subjectGaussian white mouse modelen_US
dc.subjectLinear regressionen_US
dc.subjectOptimal designen_US
dc.subjectQuadrature formulasen_US
dc.titleA new approach to optimal designs for correlated observationsen_US
dc.typeArticleen_US
dc.collaborationCardiff Universityen_US
dc.collaborationRuhr-Universität Bochumen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryEnvironmental Biotechnologyen_US
dc.subject.categoryOther Agricultural Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryGermanyen_US
dc.countryUnited Kingdomen_US
dc.countryCyprusen_US
dc.subject.fieldAgricultural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1214/16-AOS1500en_US
dc.identifier.scopus2-s2.0-85021419982-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85021419982-
dc.relation.issue4en_US
dc.relation.volume45en_US
cut.common.academicyear2017-2018en_US
dc.identifier.spage1579en_US
dc.identifier.epage1608en_US
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn2168-8966-
crisitem.journal.publisherInstitute of Mathematical Statistics-
crisitem.author.deptDepartment of Chemical Engineering-
crisitem.author.facultyFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.orcid0000-0002-4140-0444-
crisitem.author.parentorgFaculty of Geotechnical Sciences and Environmental Management-
Appears in Collections:Άρθρα/Articles
Files in This Item:
File Description SizeFormat
a new approach to optimal.pdf335.88 kBAdobe PDFView/Open
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

10
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

10
Last Week
0
Last month
1
checked on Oct 29, 2023

Page view(s) 50

344
Last Week
3
Last month
3
checked on Dec 22, 2024

Download(s)

85
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.