Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/14891
DC FieldValueLanguage
dc.contributor.authorKoutinas, Michalis-
dc.contributor.authorKiparissides, Alexandros-
dc.contributor.authorLam, Ming Chi-
dc.contributor.authorSilva-Rocha, Rafael-
dc.contributor.authorde Lorenzo, Victor-
dc.contributor.authorDos Santos, Vitor A P Martins-
dc.contributor.authorPistikopoulos, Efstratios N.-
dc.contributor.authorMantalaris, Athanasios A.-
dc.date.accessioned2019-08-08T05:57:48Z-
dc.date.available2019-08-08T05:57:48Z-
dc.date.issued2010-
dc.identifier.citationComputer Aided Chemical Engineering, 2010, vol. 28, pp. 301-306en_US
dc.identifier.issn15707946-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/14891-
dc.description.abstractA modelling framework that consists of model building, validation and analysis, leading to model-based design of experiments and to the application of optimisation-based model-predictive control strategies for the development of optimised bioprocesses is presented. An example of this framework is given with the construction and experimental validation of a dynamic mathematical model of the Ps/Pr promoters system of the TOL plasmid, which is used for the metabolism of m-xylene by Pseudomonas putida mt-2. Furthermore, the genetic circuit model is combined with the growth kinetics of the strain in batch cultures, demonstrating how the description of key genetic circuits can facilitate the improvement of existing growth kinetic models that fail to predict unusual growth patterns. Consequently, the dynamic model is combined with global sensitivity analysis, which is used to identify the presence of significant model parameters, constituting a model-based methodology for the formulation of genetic circuit optimization methods.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofComputer Aided Chemical Engineeringen_US
dc.rights© Elsevieren_US
dc.subjectDynamic modellingen_US
dc.subjectSensitivity analysisen_US
dc.subjectGenetic circuiten_US
dc.subjectpWW0 (TOL) plasmiden_US
dc.subjectPseudomonas putidaen_US
dc.titleCombining genetic circuit and microbial growth kinetic models: A challenge for biological modellingen_US
dc.typeArticleen_US
dc.collaborationImperial College Londonen_US
dc.collaborationHelmholtz Center for Infection Researchen_US
dc.collaborationCentro Nacional de Biotecnologíaen_US
dc.subject.categoryBiological Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryUnited Kingdomen_US
dc.countryGermanyen_US
dc.countrySpainen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/S1570-7946(10)28051-3en_US
dc.relation.volume28en_US
cut.common.academicyear2009-2010en_US
dc.identifier.spage301en_US
dc.identifier.epage306en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn1570-7946-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Chemical Engineering-
crisitem.author.facultyFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.orcid0000-0002-5371-4280-
crisitem.author.parentorgFaculty of Geotechnical Sciences and Environmental Management-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 9, 2023

Page view(s) 50

325
Last Week
0
Last month
3
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.