Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/14783
Πεδίο DC | Τιμή | Γλώσσα |
---|---|---|
dc.contributor.author | Gregoriades, Andreas | - |
dc.contributor.author | Mouskos, Kyriacos C. | - |
dc.date.accessioned | 2019-08-01T11:48:28Z | - |
dc.date.available | 2019-08-01T11:48:28Z | - |
dc.date.issued | 2013-03 | - |
dc.identifier.citation | Transportation Research Part C: Emerging Technologies, 2013, vol. 28, pp. 28-43 | en_US |
dc.identifier.issn | 0968090X | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/14783 | - |
dc.description.abstract | Traffic accidents constitute a major problem worldwide. One of the principal causes of traffic accidents is adverse driving behavior that is inherently influenced by traffic conditions and infrastructure among other parameters. Probabilistic models for the assessment of road accidents risk usually employs machine learning using historical data of accident records. The main drawback of these approaches is limited coverage of traffic data. This study illustrates a prototype approach that escapes from this problem, and highlights the need to enhance historical accident records with traffic information for improved road safety analysis. Traffic conditions estimation is achieved through Dynamic Traffic Assignment (DTA) simulation that utilizes temporal aspects of a transportation system. Accident risk quantification is achieved through a Bayesian Networks (BNs) model learned from the method's enriched accidents dataset. The study illustrates the integration of BN with the DTA-based simulator, Visual Interactive Systems for Transport Algorithms (VISTAs), for the assessment of accident risk index (ARI), used to identify accident black spots on road networks. . | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.relation.ispartof | Transportation Research Part C: Emerging Technologies | en_US |
dc.rights | © Elsevier | en_US |
dc.subject | Accident analysis | en_US |
dc.subject | Bayesian Networks | en_US |
dc.subject | Crash analysis | en_US |
dc.subject | Dynamic Traffic Assignment | en_US |
dc.subject | Road safety | en_US |
dc.title | Black spots identification through a Bayesian Networks quantification of accident risk index | en_US |
dc.type | Article | en_US |
dc.collaboration | European University Cyprus | en_US |
dc.collaboration | The City College of New York | en_US |
dc.subject.category | Electrical Engineering - Electronic Engineering - Information Engineering | en_US |
dc.journals | Subscription | en_US |
dc.country | Cyprus | en_US |
dc.country | United States | en_US |
dc.subject.field | Engineering and Technology | en_US |
dc.publication | Peer Reviewed | en_US |
dc.identifier.doi | 10.1016/j.trc.2012.12.008 | en_US |
dc.identifier.scopus | 2-s2.0-84873054062 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84873054062 | - |
dc.relation.volume | 28 | en_US |
cut.common.academicyear | 2012-2013 | en_US |
dc.identifier.spage | 28 | en_US |
dc.identifier.epage | 43 | en_US |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.cerifentitytype | Publications | - |
item.openairetype | article | - |
crisitem.journal.journalissn | 0968-090X | - |
crisitem.journal.publisher | Elsevier | - |
crisitem.author.dept | Department of Communication and Marketing | - |
crisitem.author.faculty | Faculty of Communication and Media Studies | - |
crisitem.author.orcid | 0000-0002-7422-1514 | - |
crisitem.author.parentorg | Faculty of Communication and Media Studies | - |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
79
checked on 14 Μαρ 2024
WEB OF SCIENCETM
Citations
67
Last Week
0
0
Last month
0
0
checked on 29 Οκτ 2023
Page view(s)
365
Last Week
0
0
Last month
35
35
checked on 14 Μαρ 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα