Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/14690
DC FieldValueLanguage
dc.contributor.authorFuertes, Ana Maria-
dc.contributor.authorIzzeldin, Marwan-
dc.contributor.authorKalotychou, Elena-
dc.date.accessioned2019-07-23T11:24:59Z-
dc.date.available2019-07-23T11:24:59Z-
dc.date.issued2009-04-
dc.identifier.citationInternational Journal of Forecasting, 2009, vol. 25, no. 2, pp. 259-281en_US
dc.identifier.issn01692070-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/14690-
dc.description.abstractSeveral recent studies advocate the use of nonparametric estimators of daily price variability that exploit intraday information. This paper compares four such estimators, realised volatility, realised range, realised power variation and realised bipower variation, by examining their in-sample distributional properties and out-of-sample forecast ranking when the object of interest is the conventional conditional variance. The analysis is based on a 7-year sample of transaction prices for 14 NYSE stocks. The forecast race is conducted in a GARCH framework and relies on several loss functions. The realized range fares relatively well in the in-sample fit analysis, for instance, regarding the extent to which it brings normality in returns. However, overall the realised power variation provides the most accurate 1-day-ahead forecasts. Forecast combination of all four intraday measures produces the smallest forecast errors in about half of the sampled stocks. A market conditions analysis reveals that the additional use of intraday data on day t - 1 to forecast volatility on day t is most advantageous when day t is a low volume or an up-market day. These results have implications for option pricing, asset allocation and value-at-risk.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Forecastingen_US
dc.rights© Elsevieren_US
dc.subjectConditional varianceen_US
dc.subjectSuperior predictive abilityen_US
dc.subjectRealised volatilityen_US
dc.subjectNonparametric estimatorsen_US
dc.subjectIntraday priceen_US
dc.titleOn forecasting daily stock volatility: The role of intraday information and market conditionsen_US
dc.typeArticleen_US
dc.collaborationCity University Londonen_US
dc.collaborationLancaster Universityen_US
dc.subject.categoryEconomics and Businessen_US
dc.journalsSubscriptionen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldSocial Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.ijforecast.2009.01.006en_US
dc.identifier.scopus2-s2.0-61849163335-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/61849163335-
dc.relation.issue2en_US
dc.relation.volume25en_US
cut.common.academicyear2008-2009en_US
dc.identifier.spage259en_US
dc.identifier.epage281en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.journal.journalissn0169-2070-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Finance, Accounting and Management Science-
crisitem.author.facultyFaculty of Tourism Management, Hospitality and Entrepreneurship-
crisitem.author.orcid0000-0003-2824-0383-
crisitem.author.parentorgFaculty of Management and Economics-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

73
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

61
Last Week
0
Last month
1
checked on Sep 30, 2023

Page view(s)

293
Last Week
1
Last month
6
checked on Nov 26, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.