Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/14683
DC FieldValueLanguage
dc.contributor.authorFuertes, Ana Maria-
dc.contributor.authorKalotychou, Elena-
dc.contributor.authorTodorovic, Natasa-
dc.date.accessioned2019-07-23T10:45:51Z-
dc.date.available2019-07-23T10:45:51Z-
dc.date.issued2014-02-08-
dc.identifier.citationReview of Quantitative Finance and Accounting, 2015, vol. 45, no. 2, pp. 251-278.en_US
dc.identifier.issn0924865X-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/14683-
dc.description.abstract. This article presents a comprehensive analysis of the relative ability of three information sets—daily trading volume, intraday returns and overnight returns—to predict equity volatility. We investigate the extent to which statistical accuracy of one-day-ahead forecasts translates into economic gains for technical traders. Various profitability criteria and utility-based switching fees indicate that the largest gains stem from combining historical daily returns with volume information. Using common statistical loss functions, the largest degree of predictive power is found instead in intraday returns. Our analysis thus reinforces the view that statistical significance does not have a direct mapping onto economic value. As a byproduct, we show that buying the stock when the forecasted volatility is extremely high appears largely profitable, suggesting a strong return-risk relationship in turbulent conditions.en_US
dc.formatPdfen_US
dc.language.isoenen_US
dc.relation.ispartofReview of Quantitative Finance and Accountingen_US
dc.rights© Springeren_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectDirectional change predictionen_US
dc.subjectTrading rulesen_US
dc.subjectRealized volatilityen_US
dc.subjectConditional variance forecastingen_US
dc.titleDaily volume, intraday and overnight returns for volatility prediction: Profitability or accuracy?en_US
dc.typeArticleen_US
dc.collaborationCity University Londonen_US
dc.subject.categoryEconomics and Businessen_US
dc.journalsOpen Accessen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldSocial Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1007/s11156-014-0436-6en_US
dc.identifier.scopus2-s2.0-84943354033-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84943354033-
dc.relation.issue2en_US
dc.relation.volume45en_US
cut.common.academicyear2014-2015en_US
dc.identifier.spage251en_US
dc.identifier.epage278en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn1573-7179-
crisitem.journal.publisherSpringer Nature-
crisitem.author.deptDepartment of Finance, Accounting and Management Science-
crisitem.author.facultyFaculty of Tourism Management, Hospitality and Entrepreneurship-
crisitem.author.orcid0000-0003-2824-0383-
crisitem.author.parentorgFaculty of Management and Economics-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

17
checked on Mar 14, 2024

Page view(s)

282
Last Week
0
Last month
5
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons