Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/14562
DC FieldValueLanguage
dc.contributor.authorAndreou, Panayiotis-
dc.contributor.authorCharalambous, Chris-
dc.contributor.authorMartzoukos, Spiros H.-
dc.date.accessioned2019-07-16T08:37:54Z-
dc.date.available2019-07-16T08:37:54Z-
dc.date.issued2002-
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Volume 2415 LNCS, 2002, Pages 1131-1136en_US
dc.identifier.isbn978-354044074-1-
dc.identifier.issn03029743-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/14562-
dc.description.abstractIn this paper we compare the predictive ability of the Black-Scholes Formula (BSF) and Artificial Neural Networks (ANNs) to price call options by exploiting historical volatility measures. We use daily data for the S&P 500 European call options and the underlying asset and furthermore, we employ nonlinearly interpolated risk-free interest rate from the Federal Reserve board for the period 1998 to 2000.Using the best models in each sub-period tested, our preliminary results demonstrate that by using historical measures of volatility, ANNs outperform the BSF.In addition, the ANNs performance improves even more when a hybrid ANN model is utilized. Our results are significant and differ from previous literature. Finally, we are currently extending the research in order to: a) incorporate appropriate implied volatility per contract with the BSF and ANNs and b) investigate the applicability of the models using trading strategies.en_US
dc.language.isoenen_US
dc.rights© Springer-Verlagen_US
dc.subjectEconomicsen_US
dc.subjectNeural networksen_US
dc.subjectElectronic tradingen_US
dc.subjectBlack-Scholes formulaen_US
dc.subjectTrading strategiesen_US
dc.subjectFederal Reserveen_US
dc.subjectRisk assessmenten_US
dc.subjectFinancial marketsen_US
dc.titleCritical assessment of option pricing methods using Artificial Neural Networksen_US
dc.typeConference Papersen_US
dc.collaborationUniversity of Cyprusen_US
dc.subject.categoryEconomics and Businessen_US
dc.journalsSubscription Journalen_US
dc.countryCyprusen_US
dc.subject.fieldSocial Sciencesen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceInternational Conference on Artificial Neural Networksen_US
cut.common.academicyear2001-2002en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptDepartment of Finance, Accounting and Management Science-
crisitem.author.facultyFaculty of Tourism Management, Hospitality and Entrepreneurship-
crisitem.author.orcid0000-0001-5742-0311-
crisitem.author.parentorgFaculty of Management and Economics-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

Page view(s)

300
Last Week
1
Last month
1
checked on Jan 3, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.