Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/14561
DC FieldValueLanguage
dc.contributor.authorAndreou, Panayiotis-
dc.contributor.authorCharalambous, Chris-
dc.contributor.authorMartzoukos, Spiros H.-
dc.date.accessioned2019-07-16T08:20:51Z-
dc.date.available2019-07-16T08:20:51Z-
dc.date.issued2008-
dc.identifier.citationEuropean Journal of Operational Research, 2008, vol. 185, iss. 3, pp. 1415-1433en_US
dc.identifier.issn03772217-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/14561-
dc.description.abstractWe compare the ability of the parametric Black and Scholes, Corrado and Su models, and Artificial Neural Networks to price European call options on the S&P 500 using daily data for the period January 1998 to August 2001. We use several historical and implied parameter measures. Beyond the standard neural networks, in our analysis we include hybrid networks that incorporate information from the parametric models. Our results are significant and differ from previous literature. We show that the Black and Scholes based hybrid artificial neural network models outperform the standard neural networks and the parametric ones. We also investigate the economic significance of the best models using trading strategies (extended with the Chen and Johnson modified hedging approach). We find that there exist profitable opportunities even in the presence of transaction costs. © 2006 Elsevier B.V. All rights reserved.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofEuropean Journal of Operational Researchen_US
dc.rights© Elsevieren_US
dc.subjectEmpirical option pricingen_US
dc.subjectFinanceen_US
dc.subjectNeural networksen_US
dc.subjectFinancial data processingen_US
dc.subjectEmpirical option pricingen_US
dc.subjectMathematical modelsen_US
dc.subjectNeural networksen_US
dc.subjectParameter estimationen_US
dc.subjectProfitabilityen_US
dc.subjectStrategic planningen_US
dc.subjectJohnson modified hedging approachen_US
dc.titlePricing and trading European options by combining artificial neural networks and parametric models with implied parametersen_US
dc.typeArticleen_US
dc.collaborationUniversity of Cyprusen_US
dc.subject.categoryEconomics and Businessen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.subject.fieldSocial Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.ejor.2005.03.081en_US
dc.identifier.scopus2-s2.0-34848839242-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/34848839242-
dc.relation.issue3en_US
dc.relation.volume185en_US
cut.common.academicyear2007-2008en_US
dc.identifier.spage1415en_US
dc.identifier.epage1433en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn0377-2217-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Finance, Accounting and Management Science-
crisitem.author.facultyFaculty of Tourism Management, Hospitality and Entrepreneurship-
crisitem.author.orcid0000-0001-5742-0311-
crisitem.author.parentorgFaculty of Management and Economics-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

43
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

37
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s) 50

315
Last Week
0
Last month
4
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.