Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/14561
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Andreou, Panayiotis | - |
dc.contributor.author | Charalambous, Chris | - |
dc.contributor.author | Martzoukos, Spiros H. | - |
dc.date.accessioned | 2019-07-16T08:20:51Z | - |
dc.date.available | 2019-07-16T08:20:51Z | - |
dc.date.issued | 2008 | - |
dc.identifier.citation | European Journal of Operational Research, 2008, vol. 185, iss. 3, pp. 1415-1433 | en_US |
dc.identifier.issn | 03772217 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/14561 | - |
dc.description.abstract | We compare the ability of the parametric Black and Scholes, Corrado and Su models, and Artificial Neural Networks to price European call options on the S&P 500 using daily data for the period January 1998 to August 2001. We use several historical and implied parameter measures. Beyond the standard neural networks, in our analysis we include hybrid networks that incorporate information from the parametric models. Our results are significant and differ from previous literature. We show that the Black and Scholes based hybrid artificial neural network models outperform the standard neural networks and the parametric ones. We also investigate the economic significance of the best models using trading strategies (extended with the Chen and Johnson modified hedging approach). We find that there exist profitable opportunities even in the presence of transaction costs. © 2006 Elsevier B.V. All rights reserved. | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.relation.ispartof | European Journal of Operational Research | en_US |
dc.rights | © Elsevier | en_US |
dc.subject | Empirical option pricing | en_US |
dc.subject | Finance | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Financial data processing | en_US |
dc.subject | Empirical option pricing | en_US |
dc.subject | Mathematical models | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Parameter estimation | en_US |
dc.subject | Profitability | en_US |
dc.subject | Strategic planning | en_US |
dc.subject | Johnson modified hedging approach | en_US |
dc.title | Pricing and trading European options by combining artificial neural networks and parametric models with implied parameters | en_US |
dc.type | Article | en_US |
dc.collaboration | University of Cyprus | en_US |
dc.subject.category | Economics and Business | en_US |
dc.journals | Subscription | en_US |
dc.country | Cyprus | en_US |
dc.subject.field | Social Sciences | en_US |
dc.publication | Peer Reviewed | en_US |
dc.identifier.doi | 10.1016/j.ejor.2005.03.081 | en_US |
dc.identifier.scopus | 2-s2.0-34848839242 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/34848839242 | - |
dc.relation.issue | 3 | en_US |
dc.relation.volume | 185 | en_US |
cut.common.academicyear | 2007-2008 | en_US |
dc.identifier.spage | 1415 | en_US |
dc.identifier.epage | 1433 | en_US |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairetype | article | - |
crisitem.journal.journalissn | 0377-2217 | - |
crisitem.journal.publisher | Elsevier | - |
crisitem.author.dept | Department of Finance, Accounting and Management Science | - |
crisitem.author.faculty | Faculty of Tourism Management, Hospitality and Entrepreneurship | - |
crisitem.author.orcid | 0000-0001-5742-0311 | - |
crisitem.author.parentorg | Faculty of Management and Economics | - |
Appears in Collections: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
43
checked on Mar 14, 2024
WEB OF SCIENCETM
Citations
37
Last Week
0
0
Last month
0
0
checked on Oct 29, 2023
Page view(s) 50
315
Last Week
0
0
Last month
4
4
checked on Dec 22, 2024
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.