Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/14557
DC FieldValueLanguage
dc.contributor.authorPanayiotou, Christiana-
dc.contributor.authorBennett, Brandon-
dc.date.accessioned2019-07-16T08:05:06Z-
dc.date.available2019-07-16T08:05:06Z-
dc.date.issued2008-
dc.identifier.citationFrontiers in Artificial Intelligence and Applications, Volume 183, Issue 1, 2008, Pages 65-78en_US
dc.identifier.isbn9781586039233-
dc.identifier.issn09226389-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/14557-
dc.description.abstractThe deployment of learning resources on the web by different experts has resulted in the accessibility of multiple viewpoints about the same topics. In this work we assume that learning resources are underpinned by ontologies. Different formalizations of domains may result from different contexts, different use of terminology, incomplete knowledge or conflicting knowledge. We define the notion of cognitive learning context which describes the cognitive context of an agent who refers to multiple and possibly inconsistent ontologies to determine the truth of a proposition. In particular we describe the cognitive states of ambiguity and inconsistency resulting from incomplete and conflicting ontologies respectively. Conflicts between ontologies can be identified through the derivation of conflicting arguments about a particular point of view. Arguments can be used to detect inconsistencies between ontologies. They can also be used in a dialogue between a human learner and a software tutor in order to enable the learner to justify her views and detect inconsistencies between her beliefs and the tutor's own. Two types of arguments are discussed, namely: arguments inferred directly from taxonomic relations between concepts, and arguments about the necessary and jointly sufficient features that define concepts. © 2008 The authors and IOS Press. All rights reserved.en_US
dc.language.isoenen_US
dc.relation.ispartofFrontiers in Artificial Intelligence and Applicationsen_US
dc.subjectFormal comparison between ontologiesen_US
dc.subjectOntologiesen_US
dc.subjectReasoningen_US
dc.titleCognitive context and arguments from ontologies for learningen_US
dc.typeConference Papersen_US
dc.collaborationUniversity of Leedsen_US
dc.subject.categoryMedia and Communicationsen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldSocial Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.3233/978-1-58603-923-3-65en_US
dc.identifier.scopus2-s2.0-84875944994-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84875944994-
cut.common.academicyear2008-2009en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
crisitem.author.deptDepartment of Communication and Internet Studies-
crisitem.author.facultyFaculty of Communication and Media Studies-
crisitem.author.orcid0000-0001-7777-4192-
crisitem.author.parentorgFaculty of Communication and Media Studies-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

1
checked on Mar 14, 2024

Page view(s) 50

319
Last Week
0
Last month
6
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.