Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/14546
DC FieldValueLanguage
dc.contributor.authorGriffeth, Nancy D.-
dc.contributor.authorCantor, Yuri-
dc.contributor.authorDjouvas, Constantinos-
dc.date.accessioned2019-07-15T10:42:54Z-
dc.date.available2019-07-15T10:42:54Z-
dc.date.issued2006-12-01-
dc.identifier.citation2006 International Conference on Software Engineering Advances, ICSEA'06, Tahiti, French Polynesia, 29 October 2006 through 3 November 2006, Category numberP2703en_US
dc.identifier.issn0769527035-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/14546-
dc.description2006 International Conference on Software Engineering Advances, ICSEA'06 2006, Article number 4031816en_US
dc.description.abstractThis paper describes an innovative approach to network testing based on automatically generating and analyzing state machine models of network behavior. The models are generated by the network test tool AGATE (Automatic Generator of Automata for TEsting), which is also described in this paper. The proposed test approach mimics experimental method, requiring repeated cycles of observing the network, modeling the network, making predictions about network behavior, and evaluating predictions. This paper focusses on the modeling step, in which the test tool AGATE automatically generates representative state machines from observed network traces. The generated state machines closely approximate the behavior of components of the network under test. Faults in the system may be immediately apparent from the state machines, but more importantly the state machines can be used for formal analysis. We propose this as a cost-effective alternative to manually defining a state machine before beginning tests. © 2006 IEEE.en_US
dc.language.isoenen_US
dc.subjectWeb servicesen_US
dc.subjectSpecificationsen_US
dc.titleTesting a network by inferring representative state machines from network tracesen_US
dc.typeConference Papersen_US
dc.collaborationCity University of New Yorken_US
dc.subject.categoryMedia and Communicationsen_US
dc.countryUnited Statesen_US
dc.subject.fieldSocial Sciencesen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceInternational Conference on Software Engineering Advancesen_US
dc.identifier.doi10.1109/ICSEA.2006.261287en_US
dc.identifier.scopus2-s2.0-38849191781-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/38849191781-
cut.common.academicyear2019-2020en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
crisitem.author.deptDepartment of Communication and Internet Studies-
crisitem.author.facultyFaculty of Communication and Media Studies-
crisitem.author.orcid0000-0003-1215-7294-
crisitem.author.parentorgFaculty of Communication and Media Studies-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

6
checked on Mar 14, 2024

Page view(s)

285
Last Week
0
Last month
5
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.