Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/14545
DC FieldValueLanguage
dc.contributor.authorDjouvas, Constantinos-
dc.contributor.authorGriffeth, Nancy D.-
dc.contributor.authorLynch, Nancy A.-
dc.date.accessioned2019-07-15T10:35:09Z-
dc.date.available2019-07-15T10:35:09Z-
dc.date.issued2006-10-31-
dc.identifier.citationElectronic Notes in Theoretical Computer Science, Volume 164, Issue 4 SPEC. ISS., 31 October 2006, Pages 67-82en_US
dc.identifier.issn15710661-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/14545-
dc.description.abstractA hard problem in network testing is verifying the correctness of a class of networks, as well as the actual networks under test. In practice, at most a few networks (sometimes only one) are actually tested. Thus an important question is how to select one or more networks that are sufficiently representative to apply the results to a class of networks. We present a model-based technique for selecting a representative network. The central theorem establishes that the representative network displays any faults present in any network of the class. This paper introduces the concept of "self-similarity," which is used to select the network, and presents the results of an experiment in testing one class of networks. © 2006.en_US
dc.language.isoenen_US
dc.relation.ispartofElectronic Notes in Theoretical Computer Scienceen_US
dc.subjectI/O automataen_US
dc.subjectmodel-checkingen_US
dc.subjectparameterized processesen_US
dc.subjectTestingen_US
dc.subjectverificationen_US
dc.titleTesting Self-Similar Networksen_US
dc.typeArticleen_US
dc.collaborationCity University of New Yorken_US
dc.collaborationMassachusetts Institute of Technologyen_US
dc.subject.categoryMedia and Communicationsen_US
dc.journalsSubscription Journalen_US
dc.countryUnited Statesen_US
dc.subject.fieldSocial Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.entcs.2006.09.007en_US
dc.identifier.scopus2-s2.0-33750050567-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/33750050567-
cut.common.academicyear2019-2020en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.journal.journalissn1571-0661-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Communication and Internet Studies-
crisitem.author.facultyFaculty of Communication and Media Studies-
crisitem.author.orcid0000-0003-1215-7294-
crisitem.author.parentorgFaculty of Communication and Media Studies-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

Page view(s) 50

290
Last Week
1
Last month
1
checked on Nov 27, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.