Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/14526
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tsapatsoulis, Nicolas | - |
dc.contributor.author | Avrithis, Yannis | - |
dc.contributor.author | Kollias, Stefanos D. | - |
dc.date.accessioned | 2019-07-12T10:54:17Z | - |
dc.date.available | 2019-07-12T10:54:17Z | - |
dc.date.issued | 2000-09-10 | - |
dc.identifier.citation | IEEE International Conference on Image Processing, Vancouver, BC, Canada, 10 September 2000 through 13 September 2000 | en_US |
dc.identifier.isbn | 0780362977 | - |
dc.identifier.issn | 15224880 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/14526 | - |
dc.description | IEEE International Conference on Image Processing Volume 2, 2000, Pages 247-250 | en_US |
dc.description.abstract | Face detection is becoming an important tool in the framework of many multimedia applications. Several face detection algorithms based on skin color characteristics have recently appeared in the literature. Most of them face generalization problems due to the skin color model they use. In this work we present a study which attempts to minimize the generalization problem by combining the M-RSST color segmentation algorithm with a Gaussian model of the skin color distribution and global shape features. Moreover by associating the resultant segments with a face probability we can index and retrieve facial images from multimedia databases. | en_US |
dc.language.iso | en | en_US |
dc.subject | Face recognition | en_US |
dc.subject | Skin | en_US |
dc.subject | Skin segmentation | en_US |
dc.title | Efficient face detection for multimedia applications | en_US |
dc.type | Conference Papers | en_US |
dc.collaboration | National Technical University Of Athens | en_US |
dc.subject.category | Media and Communications | en_US |
dc.country | Greece | en_US |
dc.subject.field | Social Sciences | en_US |
dc.publication | Peer Reviewed | en_US |
dc.relation.conference | IEEE International Conference on Image Processing | en_US |
dc.identifier.doi | 10.1109/ICIP.2000.899289 | en_US |
dc.identifier.scopus | 2-s2.0-0034441175 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/0034441175 | - |
cut.common.academicyear | 2000-2001 | en_US |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_c94f | - |
item.cerifentitytype | Publications | - |
item.openairetype | conferenceObject | - |
crisitem.author.dept | Department of Communication and Marketing | - |
crisitem.author.faculty | Faculty of Communication and Media Studies | - |
crisitem.author.orcid | 0000-0002-6739-8602 | - |
crisitem.author.parentorg | Faculty of Communication and Media Studies | - |
Appears in Collections: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
SCOPUSTM
Citations
50
17
checked on Mar 14, 2024
Page view(s) 50
399
Last Week
1
1
Last month
32
32
checked on Mar 14, 2025
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.