Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/14489
Title: A note on L<inf>1</inf> consistent estimation
Authors: Yatracos, Yannis G. 
Major Field of Science: Social Sciences
Field Category: Media and Communications
Keywords: density estimation;entropy;Kolmogorov's chain argument;Minimumā€distance estimation;rates of convergence;Vapnikā€Cervonenkis classes
Issue Date: 1-Jan-1988
Source: Canadian Journal of Statistics, Volume 16, Issue 3, September 1988, Pages 283-292
Journal: Canadian Journal of Statistics 
Abstract: Let (š’³, š’œ) be a space with a Ļƒā€field, M = {Ps; s o} a family of probability measures on A, Ī˜ arbitrary, X1,ā€¦,Xn independently and identically distributed P random variables. Metrize Ī˜ with the L1 distance between measures, and assume identifiability. Minimumā€distance estimators are constructed that relate rates of convergence with Vapnikā€Cervonenkis exponents when M is ā€œregularā€. An alternative construction of estimates is offered via Kolmogorov's chain argument. Copyright Ā© 1988 Statistical Society of Canada
URI: https://hdl.handle.net/20.500.14279/14489
ISSN: 03195724
DOI: 10.2307/3314734
Type: Article
Publication Type: Peer Reviewed
Appears in Collections:Ī†ĻĪøĻĪ±/Articles

CORE Recommender
Show full item record

SCOPUSTM   
Citations 50

6
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

7
Last Week
0
Last month
0
checked on Oct 6, 2023

Page view(s) 50

287
Last Week
0
Last month
3
checked on Nov 21, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.