Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/1447
Title: | Validation of calipso space-borne-derived attenuated backscatter coefficient profiles using a ground-based lidar in Athens, Greece | Authors: | Mamouri, Rodanthi-Elisavet Amiridis, Vassilis Papayannis, Alexandros D. Giannakaki, Elina Tsaknakis, Georgios Balis, Dimitris S. |
Major Field of Science: | Engineering and Technology | Field Category: | Civil Engineering | Keywords: | Aerosols;Optical radar;Backscattering;Troposphere | Issue Date: | 14-Sep-2009 | Source: | Atmospheric Measurement Techniques, 2009, vol. 2, no. 2, pp. 513-522 | Volume: | 2 | Issue: | 2 | Start page: | 513 | End page: | 522 | Journal: | Atmospheric Measurement Techniques | Abstract: | We present initial aerosol validation results of the space-borne lidar CALIOP -onboard the CALIPSO satellite- Level 1 attenuated backscatter coefficient profiles, using coincident observations performed with a ground-based lidar in Athens, Greece (37.9° N, 23.6° E). A multi-wavelength ground-based backscatter/Raman lidar system is operating since 2000 at the National Technical University of Athens (NTUA) in the framework of the European Aerosol Research LIdar NETwork (EARLINET), the first lidar network for tropospheric aerosol studies on a continental scale. Since July 2006, a total of 40 coincidental aerosol ground-based lidar measurements were performed over Athens during CALIPSO overpasses. The ground-based measurements were performed each time CALIPSO overpasses the station location within a maximum distance of 100 km. The duration of the ground-based lidar measurements was approximately two hours, centred on the satellite overpass time. From the analysis of the ground-based/satellite correlative lidar measurements, a mean bias of the order of 22% for daytime measurements and of 8% for nighttime measurements with respect to the CALIPSO profiles was found for altitudes between 3 and 10 km. The mean bias becomes much larger for altitudes lower that 3 km (of the order of 60%) which is attributed to the increase of aerosol horizontal inhomogeneity within the Planetary Boundary Layer, resulting to the observation of possibly different air masses by the two instruments. In cases of aerosol layers underlying Cirrus clouds, comparison results for aerosol tropospheric profiles become worse. This is attributed to the significant multiple scattering effects in Cirrus clouds experienced by CALIPSO which result in an attenuation which is less than that measured by the ground-based lidar. | URI: | https://hdl.handle.net/20.500.14279/1447 | ISSN: | 18678548 | DOI: | 10.5194/amt-2-513-2009 | Rights: | © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License. | Type: | Article | Affiliation: | National Technical University Of Athens | Affiliation : | National Technical University Of Athens National Observatory of Athens Aristotle University of Thessaloniki |
Publication Type: | Peer Reviewed |
Appears in Collections: | Άρθρα/Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Validation of Calipso space borne derived attenuated.pdf | 551.89 kB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
85
checked on Nov 9, 2023
WEB OF SCIENCETM
Citations
89
Last Week
0
0
Last month
0
0
checked on Oct 28, 2023
Page view(s) 20
514
Last Week
0
0
Last month
1
1
checked on Dec 21, 2024
Download(s)
331
checked on Dec 21, 2024
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.