Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1441
DC FieldValueLanguage
dc.contributor.authorConstantinides, Georgios-
dc.contributor.authorTweedie, Catherine A.-
dc.contributor.authorHolbrook, Doria M.-
dc.contributor.authorBarragan, Patrick-
dc.contributor.authorSmith, James F.-
dc.contributor.authorVliet, Krystyn J. Van-
dc.date.accessioned2009-05-28T12:25:20Zen
dc.date.accessioned2013-05-17T05:23:03Z-
dc.date.accessioned2015-12-02T10:13:33Z-
dc.date.available2009-05-28T12:25:20Zen
dc.date.available2013-05-17T05:23:03Z-
dc.date.available2015-12-02T10:13:33Z-
dc.date.issued2008-08-
dc.identifier.citationMaterials Science and Engineering: A, 2008, vol. 489, no. 1-2, pp. 403-412en_US
dc.identifier.issn09215093-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1441-
dc.description.abstractThe mechanical response of polymeric surfaces to concentrated impact loads is relevant to a range of applications, but cannot be inferred from quasistatic or oscillatory contact loading. Here we propose and demonstrate a set of quantitative metrics that characterizes the ability of polymers to resist impact deformation and dissipate impact energy, as well as the strain rate sensitivity of these materials to contact loading. A model which incorporates nonlinear material behavior is presented and can predict the experimentally observed deformation behavior with high accuracy. The micrometer-scale impact response of several polymers has been investigated in the velocity range of 0.7–1.5 mm/s. Two semi-crystalline polymers – polyethylene (PE) and polypropylene (PP) – characterized above the corresponding glass transition temperature Tg, and four fully amorphous polymers characterized well below Tg– polystyrene (PS), polycarbonate (PC), and low and high molecular weight poly(methyl methacrylate) or PMMA termed commercially as Lucite® (LU) and Plexiglas® (PL) – have been considered. In an inverse application, the model and experimental method provide a tool for extracting the relevant material quantities, including energy dissipation metrics such as the coefficient of restitution e. This approach can be used to determine quantitatively the impact energy absorption of polymer surfaces at elevated temperatures through Tg, as demonstrated for PS and PC over the range of 20–180 °C.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofMaterials Science and Engineering: Aen_US
dc.rights© Elsevieren_US
dc.subjectPolymersen_US
dc.subjectImpacten_US
dc.subjectNanoindentationen_US
dc.titleQuantifying deformation and energy dissipation of polymeric surfaces under localized impacten_US
dc.typeArticleen_US
dc.collaborationMassachusetts Institute of Technologyen_US
dc.collaborationMicro Materials Ltden_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.subject.categoryMaterials Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryUnited Statesen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.msea.2007.12.044en_US
dc.dept.handle123456789/54en
dc.relation.issue1-2en_US
dc.relation.volume489en_US
cut.common.academicyear2008-2009en_US
dc.identifier.spage403en_US
dc.identifier.epage412en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-1979-5176-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

44
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

40
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

468
Last Week
0
Last month
4
checked on Oct 5, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.