Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/14408
DC FieldValueLanguage
dc.contributor.authorGoodchild, Michael F.-
dc.contributor.authorKyriakidis, Phaedon-
dc.date.accessioned2019-07-09T08:21:20Z-
dc.date.available2019-07-09T08:21:20Z-
dc.date.issued2006-09-01-
dc.identifier.citationInternational Journal of Geographical Information Science, Volume 20, Issue 8, September 2006, Pages 823-855en_US
dc.identifier.issn13658816-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/14408-
dc.description.abstractThree forms of linear interpolation are routinely implemented in geographical information science, by interpolating between measurements made at the endpoints of a line, the vertices of a triangle, and the vertices of a rectangle (bilinear interpolation). Assuming the linear form of interpolation to be correct, we study the propagation of error when measurement error variances and covariances are known for the samples at the vertices of these geometric objects. We derive prediction error variances associated with interpolated values at generic points in the above objects, as well as expected (average) prediction error variances over random locations in these objects. We also place all the three variants of linear interpolation mentioned above within a geostatistical framework, and illustrate that they can be seen as particular cases of Universal Kriging (UK). We demonstrate that different definitions of measurement error in UK lead to different UK variants that, for particular expected profiles or surfaces (drift models), yield weights and predictions identical with the interpolation methods considered above, but produce fundamentally different (yet equally plausible from a pure data standpoint) prediction error variances.en_US
dc.language.isoenen_US
dc.subjectBilinear interpolationen_US
dc.subjectError propagationen_US
dc.subjectGeostatisticsen_US
dc.subjectLinear interpolationen_US
dc.subjectSpatial accuracy assessmenten_US
dc.subjectTrend surface modelsen_US
dc.titleOn the prediction error variance of three common spatial interpolation schemesen_US
dc.typeArticleen_US
dc.collaborationUniversity of Californiaen_US
dc.subject.categoryCivil Engineeringen_US
dc.journalsSubscription Journalen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1080/13658810600711279en_US
dc.identifier.scopus2-s2.0-33749048314en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/33749048314en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.issue8en
dc.relation.volume20en
cut.common.academicyear2006-2007en_US
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-4222-8567-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

32
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

28
Last Week
0
Last month
0
checked on Oct 6, 2023

Page view(s) 20

247
Last Week
0
Last month
1
checked on Nov 6, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.