Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/14402
DC FieldValueLanguage
dc.contributor.authorJournel, André G.-
dc.contributor.authorKyriakidis, Phaedon-
dc.date.accessioned2019-07-09T05:26:56Z-
dc.date.available2019-07-09T05:26:56Z-
dc.date.issued1999-08-
dc.identifier.citationMathematical Geology, 1999, vol. 31, no. 6, pp. 651-684en_US
dc.identifier.issn08828121-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/14402-
dc.description.abstractGeostatistical space-time models are used increasingly for addressing environmental problems, such as monitoring acid deposition or global warming, and forecasting precipitation or stream flow. Each discipline approaches the problem of joint space-time modeling from its own perspective, a fact leading to a significant amount of overlapping models and, possibly, confusion. This paper attempts an annotated survey of models proposed in the literature, stating contributions and pinpointing shortcomings. Stochastic models that extend spatial statistics (geostatistics) to include the additional time dimension are presented with a common notation to facilitate comparison. Two conceptual viewpoints are distinguished: (1) approaches involving a single spatiotemporal random function model, and (2) approaches involving vectors of space random functions or vectors of time series. Links between these two viewpoints are then revealed; advantages and shortcomings are highlighted. Inference from space-time data is revisited, and assessment of joint space-time uncertainty via stochastic imaging is suggested.en_US
dc.language.isoenen_US
dc.relation.ispartofMathematical Geologyen_US
dc.rights© Springeren_US
dc.subjectGeostatisticsen_US
dc.subjectSpace-time modelsen_US
dc.subjectStochastic simulationen_US
dc.subjectTime seriesen_US
dc.subjectTrend modelsen_US
dc.titleGeostatistical space-time models: A reviewen_US
dc.typeArticleen_US
dc.collaborationStanford Universityen_US
dc.subject.categoryCivil Engineeringen_US
dc.journalsHybrid Open Accessen_US
dc.countryUnited Statesen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1023/A:1007528426688en_US
dc.identifier.scopus2-s2.0-0032752472en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/0032752472en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.issue6en_US
dc.relation.volume31en_US
cut.common.academicyear1997-1998en_US
dc.identifier.spage651en_US
dc.identifier.epage684en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.journal.journalissn1874-8953-
crisitem.journal.publisherSpringer Nature-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-4222-8567-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

389
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

345
Last Week
0
Last month
0
checked on Nov 1, 2023

Page view(s)

272
Last Week
1
Last month
3
checked on Nov 21, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.