Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/14395
Πεδίο DC | Τιμή | Γλώσσα |
---|---|---|
dc.contributor.author | Kyriakidis, Phaedon | - |
dc.contributor.author | Journel, André G. | - |
dc.contributor.other | Κυριακίδης, Φαίδων | - |
dc.date.accessioned | 2019-07-08T10:23:00Z | - |
dc.date.available | 2019-07-08T10:23:00Z | - |
dc.date.issued | 2001-05 | - |
dc.identifier.citation | Atmospheric Environment, 2001, vol. 35, no. 13, pp. 2331-2337 | en_US |
dc.identifier.issn | 13522310 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/14395 | - |
dc.description.abstract | A geostatistical framework for joint spatiotemporal modeling of atmospheric pollution is presented. The spatiotemporal distribution of concentration levels is modeled as a joint realization of a collection of spatially correlated time series. Parametric temporal trend models, associated with long-term pollution variability are established from concentration profiles at monitoring stations. Such parameters, e.g., amplitude of seasonal variation, are then regionalized in space for determining trend models at any unmonitored location. The resulting spatiotemporal residual field, associated with short-term pollution variability, is also modeled as a collection of spatially correlated residual time series. Stochastic conditional simulation is proposed for generating alternative realizations of the concentration spatiotemporal distribution, which identify concentration measurements available at monitoring stations. Simulated realizations also reproduce the histogram of the sample data, and a model of their spatiotemporal correlation. Such alternative concentration fields can be used for risk analysis studies. Copyright © 2001 Elsevier Science Ltd. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Atmospheric Environment | en_US |
dc.subject | Chemical deposition | en_US |
dc.subject | Monte Carlo simulation | en_US |
dc.subject | Stochastic modeling | en_US |
dc.title | Stochastic modeling of atmospheric pollution: A spatial time-series framework. Part I: Methodology | en_US |
dc.type | Article | en_US |
dc.collaboration | Stanford University | en_US |
dc.collaboration | University of California Santa Barbara | en_US |
dc.subject.category | Civil Engineering | en_US |
dc.journals | Subscription Journal | en_US |
dc.country | United States | en_US |
dc.subject.field | Engineering and Technology | en_US |
dc.publication | Peer Reviewed | en_US |
dc.identifier.doi | 10.1016/S1352-2310(00)00541-0 | en_US |
dc.identifier.scopus | 2-s2.0-0035084950 | en |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/0035084950 | en |
dc.contributor.orcid | #NODATA# | en |
dc.contributor.orcid | #NODATA# | en |
dc.relation.issue | 13 | en_US |
dc.relation.volume | 35 | en_US |
cut.common.academicyear | 2000-2001 | en_US |
dc.identifier.spage | 2331 | en_US |
dc.identifier.epage | 2337 | en_US |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.openairetype | article | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
crisitem.journal.journalissn | 1352-2310 | - |
crisitem.journal.publisher | Elsevier | - |
crisitem.author.dept | Department of Civil Engineering and Geomatics | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0003-4222-8567 | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
40
checked on 14 Μαρ 2024
WEB OF SCIENCETM
Citations
33
Last Week
0
0
Last month
checked on 14 Σεπ 2023
Page view(s)
237
Last Week
0
0
Last month
2
2
checked on 27 Νοε 2024
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα