Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/14394
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kyriakidis, Phaedon | - |
dc.contributor.author | Journel, André G. | - |
dc.contributor.other | Κυριακίδης, Φαίδων | - |
dc.date.accessioned | 2019-07-08T10:16:26Z | - |
dc.date.available | 2019-07-08T10:16:26Z | - |
dc.date.issued | 2001-05 | - |
dc.identifier.citation | Atmospheric Environment, 2001, vol. 35, no. 13, pp. 264-282 | en_US |
dc.identifier.issn | 13522310 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/14394 | - |
dc.description.abstract | A spatial time-series framework is adopted for stochastic modeling of monthly averaged sulfate deposition over Europe. The sulfur concentration data used in this study were measured at the European Monitoring and Evaluation Program (EMEP) monitoring network from January 1980 to December 1988. Parametric temporal trend and residual models, associated with long-term (linear trend or annual periodicity) and short-term (seasonal) concentration variability, respectively, are first established at monitoring stations. The resulting model parameters are regionalized in space to arrive at parametric trend and residual models at any unmonitored location. Stochastic simulation is performed for prediction and modeling of joint uncertainty regarding unknown sulfur concentration levels at unmonitored spatial locations and time instants. The case study illustrates the applicability of the proposed spatial time series framework to a real-world data set. Copyright © 2001 Elsevier Science Ltd. | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.relation.ispartof | Atmospheric Environment | en_US |
dc.rights | © Elsevier | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | European Monitoring and Evaluation Program | en_US |
dc.subject | Geostatistics | en_US |
dc.subject | Space-time modeling | en_US |
dc.subject | Stochastic simulation | en_US |
dc.subject | Sulfate deposition | en_US |
dc.title | Stochastic modeling of atmospheric pollution: A spatial time-series framework. Part II: Application to monitoring monthly sulfate deposition over Europe | en_US |
dc.type | Article | en_US |
dc.collaboration | Stanford University | en_US |
dc.subject.category | Civil Engineering | en_US |
dc.journals | Hybrid Open Access | en_US |
dc.country | United States | en_US |
dc.subject.field | Engineering and Technology | en_US |
dc.publication | Peer Reviewed | en_US |
dc.identifier.doi | 10.1016/S1352-2310(00)00540-9 | en_US |
dc.identifier.scopus | 2-s2.0-0035081613 | en |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/0035081613 | en |
dc.contributor.orcid | #NODATA# | en |
dc.contributor.orcid | #NODATA# | en |
dc.relation.issue | 13 | en_US |
dc.relation.volume | 35 | en_US |
cut.common.academicyear | 2000-2001 | en_US |
dc.identifier.spage | 264 | en_US |
dc.identifier.epage | 282 | en_US |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.openairetype | article | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
crisitem.journal.journalissn | 1352-2310 | - |
crisitem.journal.publisher | Elsevier | - |
crisitem.author.dept | Department of Civil Engineering and Geomatics | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0003-4222-8567 | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
Appears in Collections: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
27
checked on Mar 14, 2024
Page view(s)
243
Last Week
2
2
Last month
4
4
checked on Nov 23, 2024
Google ScholarTM
Check
Altmetric
This item is licensed under a Creative Commons License