Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/14387
DC FieldValueLanguage
dc.contributor.authorBoucher, Alexandre-
dc.contributor.authorKyriakidis, Phaedon-
dc.date.accessioned2019-07-08T09:25:08Z-
dc.date.available2019-07-08T09:25:08Z-
dc.date.issued2006-10-15-
dc.identifier.citationRemote Sensing of Environment, Volume 104, Issue 3, 15 October 2006, Pages 264-282en_US
dc.identifier.issn00344257-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/14387-
dc.description.abstractMany satellite images have a coarser spatial resolution than the extent of land cover patterns on the ground, leading to mixed pixels whose composite spectral response consists of responses from multiple land cover classes. Spectral unmixing procedures only determine the fractions of such classes within a coarse pixel without locating them in space. Super-resolution or sub-pixel mapping aims at providing a fine resolution map of class labels, one that displays realistic spatial structure (without artifact discontinuities) and reproduces the coarse resolution fractions. In this paper, existing approaches for super-resolution mapping are placed within an inverse problem framework, and a geostatistical method is proposed for generating alternative synthetic land cover maps at the fine (target) spatial resolution; these super-resolution realizations are consistent with all the information available. More precisely, indicator coKriging is used to approximate the probability that a pixel at the fine spatial resolution belongs to a particular class, given the coarse resolution fractions and (if available) a sparse set of class labels at some informed fine pixels. Such Kriging-derived probabilities are used in sequential indicator simulation to generate synthetic maps of class labels at the fine resolution pixels. This non-iterative and fast simulation procedure yields alternative super-resolution land cover maps that reproduce: (i) the observed coarse fractions, (ii) the fine resolution class labels that might be available, and (iii) the prior structural information encapsulated in a set of indicator variogram models at the fine resolution. A case study is provided to illustrate the proposed methodology using Landsat TM data from SE China. © 2006 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.relation.ispartofRemote Sensing of Environmenten_US
dc.subjectDownscalingen_US
dc.subjectIndicator Krigingen_US
dc.subjectIndicator variogramsen_US
dc.subjectInverse problemsen_US
dc.subjectSpatial uncertaintyen_US
dc.subjectSub-pixel mappingen_US
dc.titleSuper-resolution land cover mapping with indicator geostatisticsen_US
dc.typeArticleen_US
dc.collaborationStanford Universityen_US
dc.collaborationUniversity of California Santa Barbaraen_US
dc.subject.categoryCivil Engineeringen_US
dc.journalsSubscription Journalen_US
dc.countryUnited Statesen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.rse.2006.04.020en_US
dc.identifier.scopus2-s2.0-33748797418en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/33748797418en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.issue3en
dc.relation.volume104en
cut.common.academicyear2006-2007en_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1en-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-4222-8567-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.journal.journalissn0034-4257-
crisitem.journal.publisherElsevier-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 50

135
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

120
Last Week
0
Last month
2
checked on Oct 29, 2023

Page view(s) 50

236
Last Week
0
Last month
0
checked on Feb 2, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.