Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/14322
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorMarangos, Orestes-
dc.contributor.authorSpencer, Paulette-
dc.contributor.authorWang, Yong-
dc.contributor.authorKatz, J. Lawrence-
dc.contributor.authorMisra, Anil S.-
dc.date.accessioned2019-07-05T09:47:57Z-
dc.date.available2019-07-05T09:47:57Z-
dc.date.issued2004-07-15-
dc.identifier.citationJournal of Biomedical Materials Research - Part B Applied Biomaterials, 2004, vol. 70, no. 1, pp. 56-65en_US
dc.identifier.issn00219304-
dc.description.abstractThe interfacial microstructure and spatial distribution of the modulus of elasticity have a profound effect on load transfer at the dentin/adhesive (d/a) interface. The microstructure is influenced by the varying degree of demineralization of intertubular and peritubular dentin during etching as well as the depth of adhesive penetration into the hybrid layer. These factors lead not only to a unique microstructure in the vicinity of the dentinal tubules, but also to a mechanically graded hybrid layer. This article investigates the micromechanical stress distribution at a d/a interface with the use of finite element analysis (FEA). Such analysis is now feasible given the newly measured moduli of elasticity at micro- and nanoscales. The results indicate that the morphological and micromechanical properties of the d/a interface affects the stress field such that the fracture/failure is likely to initiate in the stress-concentration zone of peritubular dentin next to the hybrid/exposed- collagen layer. The results suggest that devising a full-depth high modulus hybrid layer may considerably reduce the stress concentration zone and the magnitude of stress concentration in the peritubular dentin next to the hybrid/exposed-collagen layer. © 2004 Wiley Periodicals, Inc.en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Biomedical Materials Research Part B: Applied Biomaterialsen_US
dc.rights© Wileyen_US
dc.subjectCollagenen_US
dc.subjectDentin/adhesiveen_US
dc.subjectFinite elementen_US
dc.subjectInterfaceen_US
dc.subjectMicromechanicsen_US
dc.titleMicromechanical analysis of dentin/adhesive interface by the finite element methoden_US
dc.typeArticleen_US
dc.collaborationUniversity of Missouri-Kansas Cityen_US
dc.subject.categoryCivil Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryUnited Statesen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1002/jbm.b.30012en_US
dc.identifier.pmid15199584en
dc.identifier.scopus2-s2.0-3042806782en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/3042806782en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.issue1en_US
dc.relation.volume70en_US
cut.common.academicyear2003-2004en_US
dc.identifier.spage56en_US
dc.identifier.epage65en_US
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn1552-4981-
crisitem.journal.publisherWiley-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.parentorgFaculty of Engineering and Technology-
Εμφανίζεται στις συλλογές:Άρθρα/Articles
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 50

73
checked on 1 Φεβ 2024

WEB OF SCIENCETM
Citations

65
Last Week
0
Last month
1
checked on 29 Οκτ 2023

Page view(s) 50

348
Last Week
0
Last month
29
checked on 14 Μαρ 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα