Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/14275
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bali, Turan G. | - |
dc.contributor.author | Theodossiou, Panayiotis | - |
dc.date.accessioned | 2019-07-03T08:53:50Z | - |
dc.date.available | 2019-07-03T08:53:50Z | - |
dc.date.issued | 2007-04-01 | - |
dc.identifier.citation | Annals of Operations Research Volume 151, Issue 1, April 2007, Pages 241-267 | en_US |
dc.identifier.issn | 2-s2.0-33847266802 | - |
dc.identifier.issn | https://api.elsevier.com/content/abstract/scopus_id/33847266802 | - |
dc.identifier.issn | 2-s2.0-33847266802 | - |
dc.identifier.issn | 2-s2.0-33847266802 | - |
dc.identifier.issn | 02545330 | - |
dc.identifier.issn | https://api.elsevier.com/content/abstract/scopus_id/33847266802 | - |
dc.identifier.issn | 2-s2.0-33847266802 | - |
dc.identifier.issn | https://api.elsevier.com/content/abstract/scopus_id/33847266802 | - |
dc.identifier.issn | 2-s2.0-33847266802 | - |
dc.identifier.issn | https://api.elsevier.com/content/abstract/scopus_id/33847266802 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/14275 | - |
dc.description.abstract | This paper proposes a conditional technique for the estimation of VaR and expected shortfall measures based on the skewed generalized t (SGT) distribution. The estimation of the conditional mean and conditional variance of returns is based on ten popular variations of the GARCH model. The results indicate that the TS-GARCH and EGARCH models have the best overall performance. The remaining GARCH specifications, except in a few cases, produce acceptable results. An unconditional SGT-VaR performs well on an in-sample evaluation and fails the tests on an out-of-sample evaluation. The latter indicates the need to incorporate time-varying mean and volatility estimates in the computation of VaR and expected shortfall measures. © 2006 Springer Science+Business Media, LLC. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Annals of Operations Research | en_US |
dc.subject | Conditional value at risk | en_US |
dc.subject | Expected shortfall | en_US |
dc.subject | GARCH models | en_US |
dc.subject | Skewed generalized t distribution | en_US |
dc.title | A conditional-SGT-VaR approach with alternative GARCH models | en_US |
dc.type | Conference Papers | en_US |
dc.collaboration | Aristotle University of Thessaloniki | en_US |
dc.collaboration | Rutgers University | en_US |
dc.collaboration | Baruch College | en_US |
dc.subject.category | Economics and Business | en_US |
dc.journals | Subscription Journal | en_US |
dc.country | United States | en_US |
dc.country | Greece | en_US |
dc.subject.field | Social Sciences | en_US |
dc.publication | Peer Reviewed | en_US |
dc.identifier.doi | 10.1007/s10479-006-0118-4 | en_US |
dc.identifier.scopus | 2-s2.0-33847266802 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/33847266802 | - |
cut.common.academicyear | 2007-2008 | en_US |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_c94f | - |
item.cerifentitytype | Publications | - |
item.openairetype | conferenceObject | - |
crisitem.journal.journalissn | 1572-9338 | - |
crisitem.journal.publisher | Springer Nature | - |
crisitem.author.dept | Department of Finance, Accounting and Management Science | - |
crisitem.author.faculty | Faculty of Management and Economics | - |
crisitem.author.orcid | 0000-0001-5556-2594 | - |
crisitem.author.parentorg | Faculty of Management and Economics | - |
Appears in Collections: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
SCOPUSTM
Citations
50
96
checked on Mar 14, 2024
WEB OF SCIENCETM
Citations
71
Last Week
0
0
Last month
0
0
checked on Oct 29, 2023
Page view(s) 50
349
Last Week
0
0
Last month
32
32
checked on Mar 14, 2025
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.