Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/14135
DC FieldValueLanguage
dc.contributor.authorSadhanala, Aditya-
dc.contributor.authorAshraf, Raja Shahid-
dc.contributor.authorPurushothaman, Balaji-
dc.contributor.authorBroch, Katharina-
dc.contributor.authorSirringhaus, Henning-
dc.contributor.authorNeophytou, Marios-
dc.contributor.authorNovák, Jiří-
dc.contributor.authorNikolka, Mark-
dc.contributor.authorKnall, Astrid Caroline-
dc.contributor.authorHarkin, David J.-
dc.contributor.authorNielsen, Christian B.-
dc.contributor.authorHurhangee, Michael-
dc.contributor.authorHayoz, Pascal-
dc.contributor.authorMcCulloch, Iain-
dc.date.accessioned2019-06-27T07:33:56Z-
dc.date.available2019-06-27T07:33:56Z-
dc.date.issued2016-10-11-
dc.identifier.citationAdvanced Functional Materials, 2016, vol. 26, no. 38, pp. 6961-6969en_US
dc.identifier.issn1616301X-
dc.description.abstract© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Wide-bandgap conjugated polymers with a linear naphthacenodithiophene (NDT) donor unit are herein reported along with their performance in both transistor and solar cell devices. The monomer is synthesized starting from 2,6-dihydroxynaphthalene with a double Fries rearrangement as the key step. By copolymerization with 2,1,3-benzothiadiazole (BT) via a palladium-catalyzed Suzuki coupling reaction, NDT-BT co-polymers with high molecular weights and narrow polydispersities are afforded. These novel wide-bandgap polymers are evaluated as the semiconducting polymer in both organic field effect transistor and organic photovoltaic applications. The synthesized polymers reveal an optical bandgap in the range of 1.8 eV with an electron affinity of 3.6 eV which provides sufficient energy offset for electron transfer to PC 70 BM acceptors. In organic field effect transistors, the synthesized polymers demonstrate high hole mobilities of around 0.4 cm 2 V –1 s –1 . By using a blend of NDT-BT with PC 70 BM as absorber layer in organic bulk heterojunction solar cells, power conversion efficiencies of 7.5% are obtained. This value is among the highest obtained for polymers with a wider bandgap (larger than 1.7 eV), making this polymer also interesting for application in tandem or multijunction solar cells.en_US
dc.language.isoenen_US
dc.relation.ispartofAdvanced Functional Materialsen_US
dc.rights© Wileyen_US
dc.subjectconjugated polymersen_US
dc.subjectorganic field-effect transistorsen_US
dc.subjectorganic semiconductorsen_US
dc.subjectorganic solar cellsen_US
dc.subjectCzech Republicen_US
dc.subjectSwitzerlanden_US
dc.titleNaphthacenodithiophene Based Polymers—New Members of the Acenodithiophene Family Exhibiting High Mobility and Power Conversion Efficiencyen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationImperial College Londonen_US
dc.collaborationGraz University of Technologyen_US
dc.collaborationUniversity of Cambridgeen_US
dc.collaborationUniversity of Cambridgeen_US
dc.collaborationMasaryk Universityen_US
dc.collaborationKing Abdullah University of Science and Technologyen_US
dc.collaborationBASF Schweiz AGen_US
dc.subject.categoryMechanical Engineeringen_US
dc.subject.categoryMaterials Engineeringen_US
dc.journalsHybrid Open Accessen_US
dc.countryUnited Kingdomen_US
dc.countryCyprusen_US
dc.countrySaudi Arabiaen_US
dc.countryAustriaen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1002/adfm.201602285en_US
dc.identifier.scopus2-s2.0-84982214188en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84982214188en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.issue38en_US
dc.relation.volume26en_US
cut.common.academicyear2016-2017en_US
dc.identifier.spage6961en_US
dc.identifier.epage6969en_US
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.languageiso639-1en-
crisitem.journal.journalissn1616-3028-
crisitem.journal.publisherWiley-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-2207-4193-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

18
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

16
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s) 50

361
Last Week
2
Last month
10
checked on May 9, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.