Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/14056
DC FieldValueLanguage
dc.contributor.authorPappa, Anna Maria-
dc.contributor.authorOhayon, David-
dc.contributor.authorGiovannitti, Alexander-
dc.contributor.authorMaria, Iuliana Petruta-
dc.contributor.authorSavva, Achilleas-
dc.contributor.authorUguz, Ilke-
dc.contributor.authorRivnay, Jonathan-
dc.contributor.authorMcCulloch, Iain-
dc.contributor.authorOwens, Róisín M-
dc.contributor.authorInal, Sahika-
dc.date.accessioned2019-06-20T11:06:02Z-
dc.date.available2019-06-20T11:06:02Z-
dc.date.issued2018-06-22-
dc.identifier.citationScience Advances, 2018, vol. 4, no. 6en_US
dc.identifier.issn23752548-
dc.description.abstractThe inherent specificity and electrochemical reversibility of enzymes poise them as the biorecognition element of choice for a wide range of metabolites. To use enzymes efficiently in biosensors, the redox centers of the protein should have good electrical communication with the transducing electrode, which requires either the use of mediators or tedious biofunctionalization approaches. We report an all-polymer micrometer-scale transistor platform for the detection of lactate, a significant metabolite in cellular metabolic pathways associated with critical health care conditions. The device embodies a new concept in metabolite sensing where we take advantage of the ion-to-electron transducing qualities of an electron-transporting (n-type) organic semiconductor and the inherent amplification properties of an ion-to-electron converting device, the organic electrochemical transistor. The n-type polymer incorporates hydrophilic side chains to enhance ion transport/injection, as well as to facilitate enzyme conjugation. The material is capable of accepting electrons of the enzymatic reaction and acts as a series of redox centers capable of switching between the neutral and reduced state. The result is a fast, selective, and sensitive metabolite sensor. The advantage of this device compared to traditional amperometric sensors is the amplification of the input signal endowed by the electrochemical transistor circuit and the design simplicity obviating the need for a reference electrode. The combination of redox enzymes and electron-transporting polymers will open up an avenue not only for the field of biosensors but also for the development of enzyme-based electrocatalytic energy generation/storage devices.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofScience Advancesen_US
dc.rights© The Authors. Distributed under a Creative Commons Attribution Non Commercial License 4.0 (CC BY-NC)en_US
dc.subjectAmperometric sensorsen_US
dc.subjectBiomoleculesen_US
dc.subjectBiosensorsen_US
dc.subjectElectrochemical electrodesen_US
dc.subjectElectronsen_US
dc.subjectEnzyme electrodesen_US
dc.subjectEnzymesen_US
dc.subjectIonsen_US
dc.subjectMetabolitesen_US
dc.titleDirect metabolite detection with an n-type accumulation mode organic electrochemical transistoren_US
dc.typeArticleen_US
dc.collaborationUniversity of Cambridgeen_US
dc.collaborationÉcole Nationale Supérieure des Minesen_US
dc.collaborationKing Abdullah University of Science and Technologyen_US
dc.collaborationImperial College Londonen_US
dc.collaborationNorthwestern Universityen_US
dc.collaborationColumbia Universityen_US
dc.subject.categoryMechanical Engineeringen_US
dc.journalsOpen Accessen_US
dc.countryFranceen_US
dc.countryUnited Kingdomen_US
dc.countrySaudi Arabiaen_US
dc.countryUnited Statesen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1126/sciadv.aat0911en_US
dc.relation.issue6en_US
dc.relation.volume4en_US
cut.common.academicyear2017-2018en_US
item.cerifentitytypePublications-
item.openairetypearticle-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.journal.journalissn2375-2548-
crisitem.journal.publisherAmerican Association for the Advancement of Science-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0001-6454-5788-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
Files in This Item:
File Description SizeFormat
eaat0911.full.pdf1.41 MBAdobe PDFView/Open
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

150
checked on Nov 6, 2023

WEB OF SCIENCETM
Citations

145
Last Week
0
Last month
2
checked on Nov 1, 2023

Page view(s)

297
Last Week
3
Last month
11
checked on May 5, 2024

Download(s) 50

39
checked on May 5, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.