Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/13975
Title: | High-speed FPGA implementation of secure hash algorithm for IPSec and VPN applications | Authors: | Kakarountas, Athanasios P. Theodoridis, George Milidonis, Athanasios Goutis, Costas E. Michail, Harris |
Major Field of Science: | Engineering and Technology | Field Category: | Electrical Engineering - Electronic Engineering - Information Engineering | Keywords: | FPGA;Hardware implementation;Hash function;High-speed performance | Issue Date: | Aug-2006 | Source: | (2006) Journal of Supercomputing, vol.37, no. 2, pp. 179-195 | Volume: | 37 | Issue: | 2 | Journal: | Journal of Supercomputing | Abstract: | Hash functions are special cryptographic algorithms, which are applied wherever message integrity and authentication are critical. Implementations of these functions are cryptographic primitives widely used in common cryptographic schemes and security protocols such as Internet Protocol Security (IPSec) and Virtual Private Network (VPN). In this paper, a novel FPGA implementation of the Secure Hash Algorithm 1 (SHA-1) is proposed. The proposed architecture exploits the benefits of pipeline and re-timing of execution through pre-computation of intermediate temporal values. Pipeline allows division of the calculation of the hash value in four discreet stages, corresponding to the four required rounds of the algorithm. Re-timing is based on the decomposition of the SHA-1 expression to separate information dependencies and independencies. This allows pre-computation of intermediate temporal values in parallel to the calculation of other independent values. Exploiting the information dependencies, the fundamental operational block of SHA-1 is modified so that maximum operation frequency is increased by 30% approximately with negligible area penalty compared to other academic and commercial implementations. The proposed SHA-1 hash function was prototyped and verified using a XILINX FPGA device. The implementation's characteristics are compared to alternative implementations proposed by the academia and the industry, which are available in the international IP market. The proposed implementation achieved a throughput that exceeded 2,5 Gbps, which is the highest among all similar IP cores for the targeted XILINX technology. © 2006 Springer Science + Business Media, LLC. | ISSN: | 09208542 | DOI: | 10.1007/s11227-006-5682-5 | Type: | Article | Affiliation : | University of Patras Aristotle University of Thessaloniki |
Publication Type: | Peer Reviewed |
Appears in Collections: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
19
checked on Mar 14, 2024
WEB OF SCIENCETM
Citations
9
Last Week
0
0
Last month
0
0
checked on Nov 1, 2023
Page view(s)
306
Last Week
0
0
Last month
3
3
checked on Dec 26, 2024
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.