Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/13934
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorFournaris, Apostolos P.-
dc.contributor.authorKakarountas, Atharoutas P.-
dc.contributor.authorMichail, Harris-
dc.contributor.authorStouraitis, Thanos-
dc.contributor.authorSchinianakis, Dimitrios M.-
dc.date.accessioned2019-05-31T09:26:01Z-
dc.date.available2019-05-31T09:26:01Z-
dc.date.issued2009-06-
dc.identifier.citationIEEE Transactions on Circuits and Systems I: Regular Papers, 2009, vol. 56, no. 6, pp. 1202-1213en_US
dc.identifier.issn15580806-
dc.description.abstractElliptic curve point multiplication is considered to be the most significant operation in all elliptic curve cryptography systems, as it forms the basis of the elliptic curve discrete logarithm problem. Designs for elliptic curve cryptography point multiplication are area demanding and time consuming. Thus, the efficient realization of point multiplication is of fundamental importance for the performance of an elliptic curve system. In this paper, a hardware architecture of an elliptic curve point multiplier is proposed that exploits the intrinsic parallelism of the residue number system (RNS), in order to speed up the elliptic curve point calculations and minimize the area complexity of the elliptic curve point multiplier. The architecture proves to be the fastest among all known design approaches, while complexity is less than half of that of previous efforts. This architecture also supports the required input (binary-to-RNS) and output (RNS-to-binary) conversions. Through a graph-oriented approach, the area of the elliptic curve point multiplier is minimized, by optimizing the point addition and doubling algorithms. Also, through this approach, the number of execution steps for point addition is matched to the number of execution steps for point doubling. Additionally, the impact of various RNS bases, in terms of number of moduli and their bit lengths, on the area and speed of the proposed implementation is analyzed, in an effort to define the potential for using RNS in elliptic curve cryptography. © 2009 IEEE.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofIEEE Transactions on Circuits and Systems I: Regular Papersen_US
dc.rights© IEEEen_US
dc.subjectComputer arithmeticen_US
dc.subjectElliptic curve cryptography (ECC)en_US
dc.subjectResidue number system (RNS)en_US
dc.subjectFinite field arithmeticen_US
dc.titleAn RNS implementation of an Fp elliptic curve point multiplieren_US
dc.typeArticleen_US
dc.collaborationUniversity of Patrasen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryGreeceen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1109/TCSI.2008.2008507en_US
dc.identifier.scopus2-s2.0-67650364865en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/67650364865en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.issue6en_US
dc.relation.volume56en_US
cut.common.academicyear2008-2009en_US
dc.identifier.spage1202en_US
dc.identifier.epage1213en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.journal.journalissn1558-0806-
crisitem.journal.publisherIEEE-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-8299-8737-
crisitem.author.parentorgFaculty of Engineering and Technology-
Εμφανίζεται στις συλλογές:Άρθρα/Articles
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

84
checked on 14 Μαρ 2024

WEB OF SCIENCETM
Citations

66
Last Week
0
Last month
1
checked on 1 Νοε 2023

Page view(s)

343
Last Week
0
Last month
0
checked on 21 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα