Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/13878
DC FieldValueLanguage
dc.contributor.authorBoguñá, Marián-
dc.contributor.authorÁngeles Serrano, M.-
dc.contributor.authorKleineberg, Kaj-Kolja-
dc.contributor.authorPapadopoulos, Fragkiskos-
dc.date.accessioned2019-05-31T08:29:56Z-
dc.date.available2019-05-31T08:29:56Z-
dc.date.issued2016-11-01-
dc.identifier.citationNature Physics, 2016, vol. 12, no. 11, pp. 1076–1081en_US
dc.identifier.issn17452473-
dc.description.abstract© 2016 Macmillan Publishers Limited. All rights reserved. Real networks often form interacting parts of larger and more complex systems. Examples can be found in different domains, ranging from the Internet to structural and functional brain networks. Here, we show that these multiplex systems are not random combinations of single network layers. Instead, they are organized in specific ways dictated by hidden geometric correlations between the layers. We find that these correlations are significant in different real multiplexes, and form a key framework for answering many important questions. Specifically, we show that these geometric correlations facilitate the definition and detection of multidimensional communities, which are sets of nodes that are simultaneously similar in multiple layers. They also enable accurate trans-layer link prediction, meaning that connections in one layer can be predicted by observing the hidden geometric space of another layer. And they allow efficient targeted navigation in the multilayer system using only local knowledge, outperforming navigation in the single layers only if the geometric correlations are sufficiently strong.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofNature Physicsen_US
dc.rights© Springer Natureen_US
dc.titleHidden geometric correlations in real multiplex networksen_US
dc.typeArticleen_US
dc.collaborationUniversitat de Barcelonaen_US
dc.collaborationInstitució Catalana de Recerca i Estudis Avançats (ICREA)en_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.countrySpainen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1038/nphys3812en_US
dc.identifier.scopus2-s2.0-84976902576en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84976902576en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.issue11en_US
dc.relation.volume12en_US
cut.common.academicyear2016-2017en_US
dc.identifier.spage1076en_US
dc.identifier.epage1081en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn1745-2481-
crisitem.journal.publisherSpringer Nature-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4072-5781-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

89
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

79
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s) 50

449
Last Week
1
Last month
9
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.