Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/13849
Πεδίο DC | Τιμή | Γλώσσα |
---|---|---|
dc.contributor.author | Babu, Shivnath | - |
dc.contributor.author | Herodotou, Herodotos | - |
dc.date.accessioned | 2019-05-31T07:37:11Z | - |
dc.date.available | 2019-05-31T07:37:11Z | - |
dc.date.issued | 2011-08 | - |
dc.identifier.citation | Proceedings of the VLDB Endowment, 2011,vol. 4, no 11, pp. 1111-1122 | en_US |
dc.identifier.issn | 21508097 | - |
dc.description.abstract | MapReduce has emerged as a viable competitor to database systems in big data analytics. MapReduce programs are being written for a wide variety of application domains including business data processing, text analysis, natural language processing, Web graph and social network analysis, and computational science. However, MapReduce systems lack a feature that has been key to the historical success of database systems, namely, cost-based optimization. A major challenge here is that, to the MapReduce system, a program consists of black-box map and reduce functions written in some programming language like C++, Java, Python, or Ruby. We introduce, to our knowledge, the first Cost-based Optimizer for simple to arbitrarily complex MapReduce programs. We focus on the optimization opportunities presented by the large space of configuration parameters for these programs. We also introduce a Profiler to collect detailed statistical information from unmodified MapReduce programs, and a What-if Engine for fine-grained cost estimation. All components have been prototyped for the popular Hadoop MapReduce system. The effectiveness of each component is demonstrated through a comprehensive evaluation using representative MapReduce programs from various application domains. © 2011 VLDB Endowment. | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.relation.ispartof | Proceedings of the VLDB Endowment | en_US |
dc.rights | © ACM | en_US |
dc.subject | Hadoop | en_US |
dc.subject | Distributed File System | en_US |
dc.subject | Mapreduce | en_US |
dc.title | Profiling, what-if analysis, and costbased optimization of mapreduce programs | en_US |
dc.type | Article | en_US |
dc.collaboration | Duke University | en_US |
dc.subject.category | Electrical Engineering - Electronic Engineering - Information Engineering | en_US |
dc.journals | Subscription | en_US |
dc.country | United States | en_US |
dc.subject.field | Engineering and Technology | en_US |
dc.publication | Peer Reviewed | en_US |
dc.identifier.scopus | 2-s2.0-82155174846 | en |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/82155174846 | en |
dc.contributor.orcid | #NODATA# | en |
dc.contributor.orcid | #NODATA# | en |
dc.relation.issue | 11 | en_US |
dc.relation.volume | 4 | en_US |
cut.common.academicyear | 2011-2012 | en_US |
dc.identifier.spage | 1111 | en_US |
dc.identifier.epage | 1122 | en_US |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.cerifentitytype | Publications | - |
item.openairetype | article | - |
crisitem.author.dept | Department of Electrical Engineering, Computer Engineering and Informatics | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0002-8717-1691 | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
278
checked on 6 Νοε 2023
Page view(s)
331
Last Week
4
4
Last month
28
28
checked on 14 Μαρ 2025
Google ScholarTM
Check
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα