Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/13848
DC FieldValueLanguage
dc.contributor.authorHerodotou, Herodotos-
dc.contributor.authorDong, Liang-
dc.contributor.authorBabu, Shivnath-
dc.contributor.authorLuo, Gang-
dc.contributor.authorBorisov, Nedyalko-
dc.contributor.authorCetin, Fatma Bilgen-
dc.contributor.authorLim, Harold-
dc.date.accessioned2019-05-31T07:36:07Z-
dc.date.available2019-05-31T07:36:07Z-
dc.date.issued2011-10-11-
dc.identifier.citationCIDR 2011 - 5th Biennial Conference on Innovative Data Systems Research, Conference Proceedingsen_US
dc.description.abstractTimely and cost-effective analytics over "Big Data" is now a key ingredient for success in many businesses, scientific and engineering disciplines, and government endeavors. The Hadoop software stack-which consists of an extensible MapReduce execution engine, pluggable distributed storage engines, and a range of procedural to declarative interfaces-is a popular choice for big data analytics. Most practitioners of big data analytics-like computational scientists, systems researchers, and business analysts-lack the expertise to tune the system to get good performance. Unfortunately, Hadoop's performance out of the box leaves much to be desired, leading to suboptimal use of resources, time, and money (in payas-you-go clouds). We introduce Starfish, a self-tuning system for big data analytics. Starfish builds on Hadoop while adapting to user needs and system workloads to provide good performance automatically, without any need for users to understand and manipulate the many tuning knobs in Hadoop. While Starfish's system architecture is guided by work on self-tuning database systems, we discuss how new analysis practices over big data pose new challenges; leading us to different design choices in Starfish.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.subjectDatabase systemsen_US
dc.subjectInnovationen_US
dc.subjectVirtual storageen_US
dc.titleStarfish: A self-tuning system for big data analyticsen_US
dc.typeConference Papersen_US
dc.collaborationDuke Universityen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.countryUnited Statesen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceBiennial Conference on Innovative Data Systems Researchen_US
dc.identifier.scopus2-s2.0-80053500227en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/80053500227en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
cut.common.academicyear2011-2012en_US
item.openairetypeconferenceObject-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.languageiso639-1en-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-8717-1691-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 10

535
checked on Nov 6, 2023

Page view(s) 10

265
Last Week
0
Last month
2
checked on Jan 30, 2025

Google ScholarTM

Check


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.