Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/13841
DC FieldValueLanguage
dc.contributor.authorLambrakis, N.-
dc.contributor.authorAndreou, Andreas S.-
dc.contributor.authorGeorgopoulos, E.-
dc.contributor.authorBountis, T.-
dc.contributor.authorPolydoropoulos, P.-
dc.contributor.otherΛαμπράκης, Ν.-
dc.date.accessioned2019-05-31T07:16:37Z-
dc.date.available2019-05-31T07:16:37Z-
dc.date.issued2000-04-01-
dc.identifier.citationWater resources research, 2000, vol. 36, no. 4, pp. 875-884en_US
dc.identifier.issn00431397-
dc.description.abstractNonlinear methods and artificial neural network techniques are applied to the study of the regime and the possibility of short-term forecasting of discharges of the spring of Almyros, Iraklion, Crete. Questions regarding the nonlinearity and chaotic characteristics of the system necessitate the examination of dynamical properties. Toward this objective the time series of daily average discharges is analyzed in detail. First, the dimensionality of the dynamics in the reconstructed phase space is found to be quite low, ~3-4. Then several tests are applied to examine the nonlinearity and the presence of noise in the data. Using the surrogate time series test, a high degree of nonlinearity and a deterministic nature are revealed, while the differentiation test showed that the presence of high-frequency noise in the series of the discharge is not dynamically important. These suggest that an attempt to forecast the short-term future behavior of this time series may turn out to be quite successful. Nonlinear methods, such as Farmer's algorithm and artificial neural networks, were employed and found to exhibit a very satisfactory predictive ability, with neural networks achieving a slightly better performance.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofWater Resources Researchen_US
dc.rights© John Wiley & Sonsen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.titleNonlinear analysis and forecasting of a brackish karstic springen_US
dc.typeArticleen_US
dc.collaborationUniversity of Patrasen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsOpen Accessen_US
dc.countryGreeceen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1029/1999WR900353en_US
dc.identifier.scopus2-s2.0-0034069973en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/0034069973en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.issue4en_US
dc.relation.volume36en_US
cut.common.academicyear2000-2001en_US
dc.identifier.spage875en_US
dc.identifier.epage884en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn1944-7973-
crisitem.journal.publisherWiley-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0001-7104-2097-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

61
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

48
Last Week
0
Last month
1
checked on Oct 29, 2023

Page view(s)

298
Last Week
0
Last month
6
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons