Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/13812
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Koutsimpelas, Alexandros | - |
dc.contributor.author | Andreou, Andreas S. | - |
dc.date.accessioned | 2019-05-27T05:51:29Z | - |
dc.date.available | 2019-05-27T05:51:29Z | - |
dc.date.issued | 2006-06 | - |
dc.identifier.citation | Artificial Intelligence Applications and Innovations. AIAI 2006. IFIP International Federation for Information Processing, vol 204, pp. 524-532 | en_US |
dc.identifier.isbn | 978-0-387-34224-5 | - |
dc.description.abstract | Software failure and software reliability are strongly related concepts. Introducing a model that would perform successful failure prediction could provide the means for achieving higher software reliability and quality. In this context, we have employed artificial neural networks and genetic algorithms to investigate whether software failure can be accurately modeled and forecasted based on empirical data of real systems. © 2006 International Federation for Information Processing. | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.rights | © International Federation for Information Processing | en_US |
dc.subject | Evolutionary algorithms | en_US |
dc.subject | Classification (of information) | en_US |
dc.subject | Neural networks | en_US |
dc.title | Investigating the predictability of empirical software failure data with artificial neural networks and hybrid models | en_US |
dc.type | Conference Papers | en_US |
dc.collaboration | University of Cyprus | en_US |
dc.subject.category | Electrical Engineering - Electronic Engineering - Information Engineering | en_US |
dc.country | Cyprus | en_US |
dc.subject.field | Engineering and Technology | en_US |
dc.publication | Peer Reviewed | en_US |
dc.relation.conference | International Conference on Artificial Intelligence Applications and Innovations | en_US |
dc.identifier.doi | 10.1007/0-387-34224-9_61 | en_US |
dc.identifier.scopus | 2-s2.0-33749145872 | en |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/33749145872 | en |
dc.contributor.orcid | #NODATA# | en |
dc.contributor.orcid | #NODATA# | en |
dc.relation.volume | 204 | en |
cut.common.academicyear | 2005-2006 | en_US |
item.openairecristype | http://purl.org/coar/resource_type/c_c94f | - |
item.openairetype | conferenceObject | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
crisitem.author.dept | Department of Electrical Engineering, Computer Engineering and Informatics | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0001-7104-2097 | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
Appears in Collections: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
Page view(s) 50
325
Last Week
2
2
Last month
0
0
checked on Nov 24, 2024
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.