Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/13803
DC FieldValueLanguage
dc.contributor.authorSofokleous, Anastasis A.-
dc.contributor.authorAndreou, Andreas S.-
dc.date.accessioned2019-05-24T11:37:41Z-
dc.date.available2019-05-24T11:37:41Z-
dc.date.issued2007-10-
dc.identifier.citation19th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2007, Patras, Greece, 29 October 2007 through 31 October 2007en_US
dc.identifier.isbn0-7695-3015-X-
dc.identifier.issn1082-3409-
dc.descriptionProceedings - International Conference on Tools with Artificial Intelligence, ICTAI Volume 1, 2007, Article number 4410278, Pages 157-164en_US
dc.description.abstractThis paper proposes a dynamic software testing framework, which is able to analyse the source code of a program, create the necessary data structures for automatic testing, such as control flow graphs, and generate a near to optimum set of test cases with reference to a test coverage criterion. The framework consists of two sub-systems: The first is a program analysis system that identifies the type of statements and the complexity of conditions, performs analysis of variables, extracts code paths and creates the control flow graph (CFG) of the program under testing. The second is a test system that uses the CFG for automatically generating test data based on evolutionary computing. The latter system utilises a specially designed genetic algorithm to produce the set of test cases satisfying the selected coverage criterion. The efficacy and performance of the proposed testing approach is assessed and validated using a variety of sample programs. © 2007 IEEE.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rights© 2007 IEEEen_US
dc.titleBatch-optimistic test-cases generation using genetic algorithmsen_US
dc.typeConference Papersen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceInternational Conference on Tools with Artificial Intelligenceen_US
dc.identifier.doi10.1109/ICTAI.2007.113en_US
dc.identifier.scopus2-s2.0-48649103354en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/48649103354en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.volume1en_US
cut.common.academicyear2007-2008en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0001-7104-2097-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 50

7
checked on Mar 14, 2024

Page view(s)

306
Last Week
0
Last month
2
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.