Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/13791
DC FieldValueLanguage
dc.contributor.authorSofokleous, Anastasis A.-
dc.contributor.authorAndreou, Andreas S.-
dc.date.accessioned2019-05-24T09:51:08Z-
dc.date.available2019-05-24T09:51:08Z-
dc.date.issued2009-02-01-
dc.identifier.citationInternational Journal on Artificial Intelligence Tools, 2009, vol. 18, no. 1, pp. 61-80en_US
dc.identifier.issn17936349-
dc.description.abstractRecent research on software testing focuses on integrating techniques, such as computational intelligence, with special purpose software tools so as to minimize human effort, reduce costs and automate the testing process. This work proposes a complete software testing framework that utilizes a series of specially designed genetic algorithms to generate automatically test data with reference to the edge/condition testing coverage criterion. The framework utilizes a program analyzer, which examines the program's source code and builds dynamically program models for automatic testing, and a test data generation system that utilizes genetic algorithms to search the input space and determine a near to optimum set of test cases with respect to the testing coverage criterion. The performance of the framework is evaluated on a pool of programs consisting of both standard and random-generated programs. Finally, the proposed test data generation system is compared against other similar approaches and the results are discussed.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal on Artificial Intelligence Toolsen_US
dc.rights© World Scientificen_US
dc.subjectTest data generationen_US
dc.subjectGenetic algorithmsen_US
dc.titleAutomatic production of test data with a multiple batch-optimistic methoden_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1142/S0218213009000044en_US
dc.identifier.scopus2-s2.0-65249098325en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/65249098325en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.issue1en_US
dc.relation.volume18en_US
cut.common.academicyear2008-2009en_US
dc.identifier.spage61en_US
dc.identifier.epage80en_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1en-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0001-7104-2097-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.journal.journalissn1793-6349-
crisitem.journal.publisherWorld Scientific-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

1
checked on Mar 14, 2024

Page view(s)

308
Last Week
1
Last month
2
checked on Jan 30, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.