Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/13688
Title: | Implementing Inkjet-Printed Transparent Conductive Electrodes in Solution-Processed Organic Electronics | Authors: | Hermerschmidt, Felix Choulis, Stelios A. List-Kratochvil, Emil J. W. |
Major Field of Science: | Engineering and Technology | Field Category: | Materials Engineering | Keywords: | Embedded silver and copper grid;Inkjet-printed electronics;Metal nanoparticle ink;Solution-processed optoelectronics;Transparent electrode | Issue Date: | May-2019 | Source: | Advanced Materials Technologies, 2019, vol. 4, no. 5 | Volume: | 4 | Issue: | 5 | Journal: | Advanced Materials Technologies | Abstract: | Through the use of solution-based materials, the field of printed organic electronics has not only made new devices accessible, but also allows the process of manufacture to move toward a high throughput industrial scale. However, while solution-based active layer materials in these systems have been studied quite intensely, the printed electrodes and specifically the transparent conductive anode have only relatively recently been investigated. In this progress report, the use of metal nanoparticles within printed organic electronic devices is highlighted, specifically their use as replacement of the commonly used indium tin oxide transparent conductive electrode within organic photovoltaics (OPVs) and organic light emitting diodes (OLEDs). A cross fertilization between the applications is expected since an OPV device is essentially an inversely operated OLED. This report aims to highlight the use of inkjet-printed nanoparticles as cost-effective electrodes for printed optoelectronic applications and discusses methods to improve the conductive and interfacial properties. Finally, in an outlook, the use of these types of metal nanoparticle inks to manipulate light management properties, such as outcoupling, in the device is investigated. | ISSN: | 2365709X | DOI: | 10.1002/admt.201800474 | Rights: | © WILEY | Type: | Article | Affiliation : | Humboldt-Universitat zu Berlin Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH Cyprus University of Technology |
Publication Type: | Peer Reviewed |
Appears in Collections: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
16
checked on Nov 6, 2023
WEB OF SCIENCETM
Citations
13
Last Week
0
0
Last month
3
3
checked on Oct 29, 2023
Page view(s) 50
341
Last Week
1
1
Last month
2
2
checked on Dec 22, 2024
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.