Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1367
DC FieldValueLanguage
dc.contributor.authorMellit, Adel-
dc.contributor.authorKalogirou, Soteris A.-
dc.contributor.authorShaari, Sulaiman N.-
dc.contributor.authorSalhi, Hassen-
dc.contributor.authorHadjarab, A.-
dc.coverage.spatialCyprus-
dc.date.accessioned2009-05-25T13:22:14Zen
dc.date.accessioned2013-05-17T05:23:02Z-
dc.date.accessioned2015-12-02T10:17:27Z-
dc.date.available2009-05-25T13:22:14Zen
dc.date.available2013-05-17T05:23:02Z-
dc.date.available2015-12-02T10:17:27Z-
dc.date.issued2008-06-
dc.identifier.citationRenewable Energy, 2008, vol. 33, no. 7, pp. 1570-1590en_US
dc.identifier.issn09601481-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1367-
dc.description.abstractIn this paper, a suitable adaptive neuro-fuzzy inference system (ANFIS) model is presented for estimating sequences of mean monthly clearness index () and total solar radiation data in isolated sites based on geographical coordinates. The magnitude of solar radiation is the most important parameter for sizing photovoltaic (PV) systems. The ANFIS model is trained by using a multi-layer perceptron (MLP) based on fuzzy logic (FL) rules. The inputs of the ANFIS are the latitude, longitude, and altitude, while the outputs are the 12-values of mean monthly clearness index . These data have been collected from 60 locations in Algeria. The results show that the performance of the proposed approach in the prediction of mean monthly clearness index is favorably compared to the measured values. The root mean square error (RMSE) between measured and estimated values varies between 0.0215 and 0.0235 and the mean absolute percentage error (MAPE) is less than 2.2%. In addition, a comparison between the results obtained by the ANFIS model and artificial neural network (ANN) models, is presented in order to show the advantage of the proposed method. An example for sizing a stand-alone PV system is also presented. This technique has been applied to Algerian locations, but it can be generalized for any geographical position. It can also be used for estimating other meteorological parameters such as temperature, humidity and wind speed.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofRenewable Energyen_US
dc.rights© Elsevieren_US
dc.subjectClearness index Kten_US
dc.subjectSolar radiationen_US
dc.subjectPV system sizingen_US
dc.subjectANFISen_US
dc.subjectANNen_US
dc.titleMethodology for predicting sequences of mean monthly clearness index and daily solar radiation data in remote areas: Application for sizing a stand-alone PV systemen_US
dc.typeArticleen_US
dc.collaborationCentre University of Médéaen_US
dc.collaborationHigher Technical Institute Cyprusen_US
dc.collaborationUniversiti Teknologi MARA 40450 Shah Alamen_US
dc.collaborationBlida Universityen_US
dc.collaborationDevelopment Centre of Renewable Energy (CDER)en_US
dc.collaborationDepartamento de Energias Renerablesen_US
dc.subject.categoryEnvironmental Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryAlgeriaen_US
dc.countryMalaysiaen_US
dc.countrySpainen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.renene.2007.08.006en_US
dc.dept.handle123456789/54en
dc.relation.issue7en_US
dc.relation.volume33en_US
cut.common.academicyear2007-2008en_US
dc.identifier.spage1570en_US
dc.identifier.epage1590en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.journal.journalissn0960-1481-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4497-0602-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

119
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

86
Last Week
0
Last month
1
checked on Oct 29, 2023

Page view(s)

486
Last Week
1
Last month
3
checked on Nov 21, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.