Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1364
DC FieldValueLanguage
dc.contributor.authorChoulis, Stelios A.-
dc.contributor.authorNelson, Jenny K.-
dc.contributor.authorDurrant, James Robert-
dc.contributor.otherΧούλης, Στέλιος Α.-
dc.date.accessioned2013-03-06T16:54:51Zen
dc.date.accessioned2013-05-17T05:23:00Z-
dc.date.accessioned2015-12-02T10:17:20Z-
dc.date.available2013-03-06T16:54:51Zen
dc.date.available2013-05-17T05:23:00Z-
dc.date.available2015-12-02T10:17:20Z-
dc.date.issued2004-06-28-
dc.identifier.citationThin solid films, 2004, vol. 451–452, pp. 508–514en_US
dc.identifier.issn00406090-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1364-
dc.description.abstractSolar cells based on polymer–fullerene blends are amongst the most efficient organic photovoltaic devices with power conversion efficiencies now exceeding 3%. The large interfacial area in such dispersed heterojunctions, which is essential for charge separation, also enables charge recombination. Understanding recombination is, therefore, of key importance in the optimisation of device performance. Recent measurements of charge recombination in blends of poly(2-methoxy-5-(3′,7′-dimethyloctyloxy)-1-4-phenylene vinylene), (MDMO-PPV) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 (PCBM) by transient optical spectroscopy reveal that recombination dynamics possess two phases, one fast, intensity dependent phase and a slow, intensity independent phase which dominates at low light intensities. The recombination is thermally activated, and the kinetics are sensitive to background illumination but insensitive to the blend composition. Simple models of bimolecular recombination cannot explain these features. In this article, we present a model for the mechanism of charge recombination, based on multiple trapping of polarons by a distribution of traps in the polymer phase. The model explains the observed recombination kinetics and their dependence on light intensity, temperature and fullerene concentration. We show that under solar illumination conditions, charge recombination is limited by the activation of positive polarons out of deep traps, yet carrier collection competes successfully with recombination in thin films. The model is evaluated by comparison with data on cells and independent measurements of charge carrier mobility, and the implications for cell performance are discusseden_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofThin Solid Filmsen_US
dc.rights© Elsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectPhotovoltaic cellsen_US
dc.subjectComputer simulationen_US
dc.subjectFullerenesen_US
dc.subjectHeterojunctionsen_US
dc.subjectSolar cellsen_US
dc.titleCharge recombination in polymer/fullerene photovoltaic devicesen_US
dc.typeArticleen_US
dc.affiliationImperial College Londonen
dc.collaborationImperial College Londonen_US
dc.subject.categoryENGINEERING AND TECHNOLOGYen_US
dc.journalsHybrid Open Accessen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.tsf.2003.11.064en_US
dc.dept.handle123456789/54en
dc.relation.volume451–452en_US
cut.common.academicyear2004-2005en_US
dc.identifier.spage508en_US
dc.identifier.epage514en_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1en-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-7899-6296-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.journal.journalissn0040-6090-
crisitem.journal.publisherElsevier-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

51
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 50

50
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

571
Last Week
0
Last month
5
checked on Jan 30, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons