Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1363
DC FieldValueLanguage
dc.contributor.authorChoulis, Stelios A.-
dc.contributor.authorTomić, Stanko S.-
dc.contributor.authorO'Reilly, Eoin P O-
dc.contributor.otherΧούλης, Στέλιος Α.-
dc.date.accessioned2013-03-06T16:52:26Zen
dc.date.accessioned2013-05-17T05:23:00Z-
dc.date.accessioned2015-12-02T10:17:19Z-
dc.date.available2013-03-06T16:52:26Zen
dc.date.available2013-05-17T05:23:00Z-
dc.date.available2015-12-02T10:17:19Z-
dc.date.issued2003-09-
dc.identifier.citationIEEE journal on selected topics in quantum electronics, 2003, vol. 9, no. 5, pp. 1228-1238en_US
dc.identifier.issn1077260X-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1363-
dc.description.abstractWe present a comprehensive theoretical and experimental analysis of 1.3-μm InGaAsN/GaAs lasers. After introducing the 10-band k · p Hamiltonian which predicts transition energies observed experimentally, we employ it to investigate laser properties of ideal and real InGaAsN/GaAs laser devices. Our calculations show that the addition of N reduces the peak gain and differential gain at fixed carrier density, although the gain saturation value and the peak gain as a function of radiative current density are largely unchanged due to the incorporation of N. The gain characteristics are optimized by including the minimum amount of nitrogen necessary to prevent strain relaxation at the given well thickness. The measured spontaneous emission and gain characteristics of real devices are well described by the theoretical model. Our analysis shows that the threshold current is dominated by nonradiative, defect-related recombination. Elimination of these losses would enable laser characteristics comparable with the best InGaAsP/InP-based lasers with the added advantages provided by the GaAs system that are important for vertical integrationen_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofIEEE journal on selected topics in quantum electronicsen_US
dc.rights© IEEEen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectSemiconductor lasersen_US
dc.subjectGallium arsenideen_US
dc.subjectLaser transitionsen_US
dc.subjectNitrogenen_US
dc.subjectOptical fibersen_US
dc.titleTheoretical and experimental analysis of 1.3-μm InGaAsN/GaAs lasersen_US
dc.typeArticleen_US
dc.affiliationImperial College Londonen
dc.collaborationImperial College Londonen_US
dc.journalsHybrid Open Accessen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1109/JSTQE.2003.819516en_US
dc.dept.handle123456789/54en
dc.relation.issue5en_US
dc.relation.volume9en_US
cut.common.academicyear2003-2004en_US
dc.identifier.spage1228en_US
dc.identifier.epage1238en_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1en-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-7899-6296-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.journal.journalissn1558-4542-
crisitem.journal.publisherIEEE-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

150
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 50

135
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

560
Last Week
6
Last month
6
checked on Jan 30, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons